首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between large herbivores and their food supply are central to the study of population dynamics. We assessed temporal and spatial patterns in meadow plant biomass over a 23‐year period for meadow complexes that were spatially linked to three distinct populations of Roosevelt elk (Cervus elaphus roosevelti) in northwestern California. Our objectives were to determine whether the plant community exhibited a tolerant or resistant response when elk population growth became irruptive. Plant biomass for the three meadow complexes inhabited by the elk populations was measured using Normalized Difference Vegetation Index (NDVI), which was derived from Landsat 5 Thematic Mapper imagery. Elk populations exhibited different patterns of growth through the time series, whereby one population underwent a complete four‐stage irruptive growth pattern while the other two did not. Temporal changes in NDVI for the meadow complex used by the irruptive population suggested a decline in forage biomass during the end of the dry season and a temporal decline in spatial variation of NDVI at the peak of plant biomass in May. Conversely, no such patterns were detected in the meadow complexes inhabited by the nonirruptive populations. Our findings suggest that the meadow complex used by the irruptive elk population may have undergone changes in plant community composition favoring plants that were resistant to elk grazing.  相似文献   

2.
Two versions of a stage-structured model of Cirsium vulgare population dynamics were developed. Both incorporated density dependence at one stage in the life cycle of the plant. In version 1 density dependence was assumed to operate during germination whilst in version 2 it was included at the seedling stage. Density-dependent parameter values for the model were estimated from annual census data in a factorial grazing experiment. Version 1 of the model produced significant estimates of density dependence under field conditions. The estimated values, when included in a simulation of the dynamics, produced two-point limit cycles under conditions of hard grazing. The limit cycles were most pronounced at the early rosette stage. Comparison of the effects of density dependence at the two different stages in the life cycle revealed a strong difference in predicted dynamics. This emphasizes the importance of determining where density dependence operates under field conditions and the potential problems of arbitrarily assigning it to particular life-history stages. Version 1 of the model produced a good prediction of observed mean plant density across the different grazing treatments (r 2=0.81, P<0.001).  相似文献   

3.
Temporal partitioning of daily activities between species may promote coexistence within animal communities by reducing behavioural interference, particularly when species highly overlap in the use of space and resources. Such a strategy may be used by Alpine chamois (Rupicapra rupicapra rupicapra) when in the presence of mouflon (Ovis gmelini musimon × Ovis sp.), an introduced highly gregarious species with a broader ecological niche, overlapping with that of chamois. Using simultaneous monitoring of 29 Global Positioning System‐collared chamois and 12 mouflon, we assessed the temporal variation in activity patterns of chamois amongst two subpopulations: one without mouflon and one with mouflon, during January and August, which are the two most extreme periods of spatial overlap of mouflon with chamois distribution. Substantial differences in activity patterns between chamois and mouflon were observed (mean 13.8 ± 10.5% in January and 10.6 ± 11.6% in August). More subtle differences appeared between both subpopulations of chamois and persisted, regardless of the spatial overlap with mouflon (3.2 ± 1.8% in January and 2.6 ± 1.5% in August), thus highlighting that there is no behavioural interference from mouflon on chamois. Our findings suggest that the temporal partitioning of daily activities between chamois and mouflon, although probably a result of species‐specific adaptations to environmental conditions, may contribute to their coexistence. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 621–626.  相似文献   

4.
Understanding the role of consumers in density‐dependent plant population dynamics is a long‐standing goal in ecology. However, the generality of herbivory effects across heterogeneous landscapes is poorly understood due to the pervasive influence of context‐dependence. We tested effects of native insect herbivory on the population dynamics of an exotic thistle, Cirsium vulgare, in a field experiment replicated across eight sites in eastern Nebraska. Using hierarchical Bayesian analysis and density‐dependent population models, we found potential for explosive low‐density population growth (λ > 5) and complex density fluctuations under herbivore exclusion. However, herbivore access drove population decline (λ < 1), suppressing complex fluctuations. While plant–herbivore interaction outcomes are famously context‐dependent, we demonstrated that herbivores suppress potentially invasive populations throughout our study region, and this qualitative outcome is insensitive to environmental context. Our novel use of Bayesian demographic modelling shows that native insect herbivores consistently prevent hard‐to‐predict fluctuations of weeds in environments otherwise susceptible to invasion.  相似文献   

5.
1. Although both endogenous and exogenous processes regulate populations, the current understanding of the contributions from density dependence and climate to the population dynamics of eruptive herbivores remains limited. 2. Using a 17‐year time series of three cereal aphid species [Rhopalosiphum padi L., Metopolophium dirhodum (Walker), and Diuraphis noxia (Kurdumov)] compiled from a trapping network spanning the northwestern U.S.A., temporal and spatial patterns associated with population fluctuations, and modelled density dependence in aphid abundances were tested. These models were used to analyse correlations between climate and aphid abundances in the presence and absence of residual variance as a result of density‐dependent effects. 3. The temporal dynamics of aphid population fluctuations indicated periodicity, with no clear evidence for a spatial pattern underlying population fluctuations. 4. Aphid abundances oscillated in a manner consistent with delayed density dependence for all three aphid species, although the strength of these feedbacks differed among species. 5. Diuraphis noxia abundances were negatively correlated with increasing temperatures in the absence of density‐dependent effects, whereas M. dirhodum abundances were positively correlated with increasing cumulative precipitation in the presence of density‐dependent effects; yet, R. padi abundances were unrelated to climate variables irrespective of population feedbacks. 6. Our analysis suggests that endogenous feedbacks differentially regulate aphid populations in the northwestern U.S.A., and these feedbacks may operate at an expansive spatial scale. It is concluded that the contributions of density dependence and climate to aphid population dynamics are species‐specific in spite of similar ecological niches, with implications for assessing species responses to climate variability.  相似文献   

6.
Smit  R.  Bokdam  J.  den Ouden  J.  Olff  H.  Schot-Opschoor  H.  Schrijvers  M. 《Plant Ecology》2001,155(1):119-127
In this study we analysed the effects of large herbivores on smallrodent communities in different habitats using large herbivore exclosures. Westudied the effects of three year grazing introduction by red deer(Cervus elaphus L.) in previously ungrazed pine and oakwoodland and the exclusion of grazing by red deer, roe deer(Capreoluscapreolus L.) and mouflon (Ovis ammon musiminL.) in formerly, heavily grazed pine woodland and heathland. At eight exclosuresites within each habitat type, small rodents were captured with live trapsusing trapping grids. At each trapping grid, seed plots of beechnuts(Fagus sylvatica L.) and acorns (Quercusrobur L.) were placed to measure seed predation by rodents.Exclusion of grazing by large herbivores in formerly, heavily grazedhabitats had a significant effect on small rodent communities. Insideexclosureshigher densities of mainly wood mice (Apodemus sylvaticusL.) and field voles (Microtus agrestis L.) were captured.Introduction of grazing by red deer appeared to have no significant negativeeffects on small rodent communities. The seed predation intensity of beechnutsand acorns by small rodents was significantly higher in ungrazed situations,particularly in habitats that were excluded from grazing. The differencesbetween grazing introduction and exclusion effects on small rodent communitiescan be explained by differences in vegetation structure development. Therecovery of heavily browsed understory vegetation after large herbivore grazingexclusion proceeded faster than the understory degradation due to grazingintroduction. Small rodents depend on structural rich vegetations mainly forshelter. We conclude that large herbivores can have significant effects onvegetation dynamics not only via direct plant consumption but also throughindirect effects by reducing the habitat quality of small rodent habitats.  相似文献   

7.
Irruptive migrants are partially migrating species showing pronounced temporal variation in the number of migrants. Occasional irruptions are often explained by increased population density (per area) or lack of food. Similarly to population dynamics, these explanations are not mutually exclusive, but probably act in concert. Here we do a parallel analysis on the migration intensity and population dynamics of an irruptive migratory bird species, the great spotted woodpecker Dendrocopos major, in southern Finland. Both analyses include simultaneous effects of breeding density and cone crops of Scots pine Pinus sylvestris and Norway spruce Picea abies. A novel model for statistical analyses of irruptive migration intensity is developed. Population dynamics are investigated using log‐linear state‐space models. Woodpecker migration intensity is well explained by lack of spruce cones and increases proportionally to population density. Population dynamics is most successfully described with a density dependent model, where the natural logarithm of spruce cone availability previous autumn has a strong positive effect on population growth. This is likely to be due to lowered winter mortality and lowered emigration rates resulting from plentiful food availability. Although the species uses pine cones as a food resource in winter, the estimated impacts of pine cone crops on migration intensity and population dynamics are low, probably due to low annual variation in crop comparing to spruce cones. Large irruptions also tend to occur earlier in season, often before cones are a crucial food resource for the woodpeckers, suggesting that the woodpeckers use the amount of maturing cones as a cue for upcoming conditions. Our results show that the ecological role of different resources can differ considerably from the expected pattern based on the proportion of the resources in a species’ diet. Advantages of examining patterns of bird migration, population density and dynamics in unison are apparent.  相似文献   

8.
1. Competition between herbivores often plays an important role in population ecology and appears strongest when densities are high or plant production is low. Phytophagous insects are often highly abundant, but relatively few experiments have examined competition between vertebrates and phytophagous insects. 2. In grassland systems worldwide, grasshoppers are often the dominant phytophagous insect, and livestock grazing is a dominant land use. For this study, a novel experiment was conducted examining competition between vertebrates and invertebrates, where both grasshopper densities and sheep grazing were manipulated inside 10‐m2 caged mesocosms during a grasshopper outbreak. We examined how grasshopper densities and the timing of vertebrate herbivory affected grasshopper densities, if the effects of vertebrates on survival and reproduction changed with grasshopper density, and how a naturally occurring grasshopper outbreak affected grasshopper populations in the following year. 3. Densities of grasshoppers at the site peaked at 130 m–2. Food‐limited competition was stronger in treatments with higher grasshopper densities and repeated or late livestock herbivory, leading to reduced survival, femur length, and functional ovarioles, a measure of future reproduction. Strong food‐limited density‐dependent reproduction and survival led to reduced hatching densities in 2001. 4. As competition was typically stronger with high grasshopper densities than with livestock grazing, competition from vertebrates could be relatively less important for phytophagous insect population dynamics during outbreaks. The experiment provides insights into how competition between insect and vertebrate herbivores influences insect population dynamics, and indicates that severe outbreaks can rapidly subside with strong competition from vertebrate and insect herbivores.  相似文献   

9.
Mycorrhizal associations are widespread in high‐latitude ecosystems and are potentially of great importance for global carbon dynamics. Although large herbivores play a key part in shaping subarctic plant communities, their impact on mycorrhizal dynamics is largely unknown. We measured extramatrical mycelial (EMM) biomass during one growing season in 16‐year‐old herbivore exclosures and unenclosed control plots (ambient), at three mountain birch forests and two shrub heath sites, in the Scandes forest‐tundra ecotone. We also used high‐throughput amplicon sequencing for taxonomic identification to investigate differences in fungal species composition. At the birch forest sites, EMM biomass was significantly higher in exclosures (1.36 ± 0.43 g C/m2) than in ambient conditions (0.66 ± 0.17 g C/m2) and was positively influenced by soil thawing degree‐days. At the shrub heath sites, there was no significant effect on EMM biomass (exclosures: 0.72 ± 0.09 g C/m2; ambient plots: 1.43 ± 0.94). However, EMM biomass was negatively related to Betula nana abundance, which was greater in exclosures, suggesting that grazing affected EMM biomass positively. We found no significant treatment effects on fungal diversity but the most abundant ectomycorrhizal lineage/cortinarius, showed a near‐significant positive effect of herbivore exclusion (p = .08), indicating that herbivory also affects fungal community composition. These results suggest that herbivory can influence fungal biomass in highly context‐dependent ways in subarctic ecosystems. Considering the importance of root‐associated fungi for ecosystem carbon balance, these findings could have far‐reaching implications.  相似文献   

10.
The breeding biology of the Red Kite Milvus milvus is still little known in the southern part of its range (Mediterranean), despite recent conservation concerns and major declines in most insular populations (Sicily, Sardinia and Balearics). We report here on the breeding biology of the Red Kite in Corsica in 1996–99 and on recent population trends there. In a 42‐km2 study area located in the northwest of the island (Balagne region), breeding density was locally high (1.17–1.78 breeding pairs/km2). Breeding dispersion ranged from loosely colonial to dispersed, with average nearest‐neighbour distance of 444 ± 316 m (range 50–2000) (all data as means ± sd). Kites established breeding territories in January–February, and 92.4% of territorial pairs laid a clutch (n = 238). Laying took place between February and May (mean lay date: 27 March ± 16 days, n = 147). Clutch size averaged 2.44 ± 0.71 (1–5 eggs, n = 96), hatching success 66.9% and fledging success 78.6%. Productivity averaged 1.33 ± 0.88 young per breeding attempt (n = 221) and 1.65 ± 0.65 young per successful breeding attempt (n = 173). Overall breeding success was 51.4 ± 38.0% (n = 88). We describe the growth of young (wing, weight, tarsus and bill) and show a marked seasonal decline in clutch size and breeding performance, with pairs laying earlier producing larger clutches and being more successful than later breeding pairs. Unlike most other insular Mediterranean Red Kite populations that have recently declined, the breeding population in the northwest of Corsica, which accounts for c. 25% of the whole island population, increased from 25 to 35 pairs in 1989 to a maximum of 80–90 pairs in 1997. This increase was probably related to the lack of persecution and a local increase in abundance of Rabbits Oryctolagus cuniculus, following their introduction in the late 1970s, which provided an important feeding resource for Kites. Finally, we compare our results with those from other Red Kite populations studied in Europe. We found that there is a latitudinal gradient in laying date and productivity across Western Europe populations, but no evidence of an insular syndrome in the Corsican population.  相似文献   

11.
Five mouflon [average body mass (BM) 33 kg] and two roe deer (average BM 20 kg) with rumen cannulas were kept in large enclosures under semi-natural conditions and were used for seasonal studies on gastrointestinal tract (GIT) indigestible fill and digesta passage kinetics. As the mouflon were not fully mature, both species had similar digesta volumes in the reticulorumen (RR; mouflon 5.5 ± 1.8% of BM; roe deer 5.4 ± 1.5% of BM); however, the mouflon had lower RR liquid flow rates (15.1 ± 4.3 ml h−1 kg−0.75) than the roe deer (19.2 ± 0.2 ml h−1 kg−0.75), and particle retention in the RR accounted for 68 ± 3% of total GIT retention in the mouflon versus 55 ± 6% in the roe deer. Annual average total GIT retention times for liquids and particles were longer in the mouflon (23.4 ± 0.9 h and 37.9 ± 4.0 h) than in the roe deer (18.4 ± 1.7 h and 22.4 ± 1.9 h). Similarly, annual average RR retention times for liquids and particles were longer in the mouflon (11.9 ± 0.9 h and 25.8 ± 3.3 h) than in the roe deer (8.1 ± 1.7 h and 12.5 ± 2.3 h). The factor of selective particle retention in the RR (retention of particles/retention of liquid) was 2.10 ± 0.09 in the mouflon versus 1.54 ± 0.01 in the roe deer. These observations are in accord with differences in digesta passage characteristics postulated between browsing and grazing ruminants. Total GIT indigestible fill was lower in the mouflon than in the roe deer (10.7 ± 2.1 g kg−1 and 13.3 ± 1.0 g kg−1).  相似文献   

12.
Plants of low stature may benefit from the presence of large herbivores through removal of tall competitive neighbours and increased light availability. Accordingly, removal of grazers has been predicted to disfavour small species. In addition to this indirect beneficial effect, the population dynamics of plants is strongly influenced by variation in external conditions such as temperature and precipitation. However, few studies have examined the interaction between large herbivores and inter-annual variation in climate for the population dynamics of small plant species not preferred by herbivores. We studied three populations of the perennial herb Viola biflora exposed to different sheep densities (high, low and zero) for 6 years in a field experiment. Plants were also impacted by invertebrate and small vertebrate herbivores (rodents). Rates of growth were marginally higher at high sheep densities, and during warm summers both survival and growth were higher when sheep were present. Thus, while the height of tall herbs was positively related to July temperature, it was less so in the treatments with sheep, suggesting that sheep reduce the negative effects of interspecific competition for this small herb. Life table response experiment analyses revealed that the population growth rate (λ) was slightly lower in the absence of sheep, but between-year variation in λ was larger than variation among sheep density treatments. λ was negatively related to July temperature, with an additional negative effect of vertebrate grazing frequency (sheep or rodent grazing). The evidence from this 6-year study suggests that the population dynamics of Viola biflora is determined by a complex interplay between climate and grazing by both large and small herbivores.  相似文献   

13.
Abstract 1. Anthropogenic increases in nitrogen deposition are impacting terrestrial ecosystems worldwide. While some of the direct ecosystem‐level effects of nitrogen deposition are understood, the effects of nitrogen deposition on plant–insect interactions and on herbivore population dynamics have received less attention. 2. Nitrogen deposition will potentially influence both plant resource availability and herbivore population growth. If increases in herbivore population growth outstrip increases in resource availability, then increases in the strength of density dependence expressed within the herbivore population would be predicted. Alternatively, if plant resources respond more vigorously to nitrogen deposition than do herbivore populations, a decline in the strength of density dependence would be expected. No change in the strength of density dependence acting upon the herbivore population would suggest equivalent responses by herbivores and plants. 3. A density manipulation experiment was performed to examine the effect of nitrogen deposition on the interaction between a host plant, Asclepias tuberosa, and its herbivore, Aphis nerii. Aphid maximum per capita growth rate (Rmax), carrying capacity (K), and the strength of density dependence were measured under three nitrogen deposition treatments. The effect of nitrogen deposition on the relationship among these three measures of insect population dynamics was explored. 4. Simulated nitrogen deposition increased aphid per capita population growth, plant foliar nitrogen concentrations, and plant biomass. Nitrogen deposition caused Rmax and K to increase proportionally, leading to no overall change in the strength of density dependence. In this system, potential changes in the negative feedback processes operating on herbivore populations following nitrogen deposition appear to be buffered by concomitant changes in resource availability.  相似文献   

14.
Nora Underwood 《Oikos》2010,119(12):1993-1999
Net intraspecific density dependence experienced by insect herbivores at the scale of single plants can be a function both of induced resistance in the plant and other interactions among individual herbivores. Theory suggests that non‐linearity in the form of this density dependence can influence the effects of plants on herbivore population dynamics. This study examined both net density dependence at the scale of single plants, and changes in plant quality with herbivore density for Spodoptera exigua caterpillars on tomato plants. One experiment measured the growth of caterpillars moving freely about the plant at different densities, the distribution of damage by these caterpillars, and the quality of the plant as food for caterpillars (growth of caterpillars on undamaged leaf tissue excised from the plant). A second experiment measured plant quality for plants with different amounts of damage by caterpillars confined to particular leaves in mesh bags. Growth of S. exigua caterpillars was found to be negatively density dependent, and this was in part due to decreases in plant quality both as herbivore density increased and as the amount of damage increased. The response of plant quality to herbivores was found to have non‐linear features; there was both a threshold below which no significant decreases in quality (as measured by herbivore growth) occurred, and the decrease in herbivore performance saturated at the highest damage levels. In addition, it was found that caterpillar damage was significantly more aggregated than expected when multiple caterpillars occupy a single plant. This study confirms that host plants have the potential to be a source of density dependence that affects herbivore performance.  相似文献   

15.
Density‐dependent feedback mechanisms provide insights into the population dynamics and interactions of large herbivores with their ecosystem. Sex ratio also has particularly important implications for growth rates of many large mammal populations through its influence on reproductive potential. Therefore, the interrelationships between density‐dependent factors, comprising density, sex ratio and underlying growth rates (r) were examined for the Eastern black rhino (Diceros bicornis michaeli) living in three rhino sanctuaries in Kenya using four population models. The exponential and logistic models gave similar results and the former were accepted because they better portrayed the actual situation on the ground. Sex ratios in all sanctuary populations were positively correlated with r but interpreted with realization of other factors also affecting r. We caution that the results of population models should be interpreted alongside ground‐truthed observations. We recommend that future translocation strategies should take into account sex and age structures of the donor population, while future studies of density dependence should take into account both biotic and abiotic factors.  相似文献   

16.
In studying how environmental factors control the population dynamics of Pfiesteria piscicida Steidinger et Burkholder, we examined the influence of light regime on kleptoplastidic photosynthesis, growth, and grazing. Prey (Rhodomonas sp.)‐saturated growth rate of P. piscicida increased (0.67 ± 0.03 d?1 to 0.91 ± 0.11 d?1) with light intensity varying from 0 to 200 μmol photons·m?2·s?1. No significant effect was observed on grazing, excluding the possibility that light enhanced P. piscicida growth through stimulating grazing. Light‐grown P. piscicida exhibited a higher gross growth efficiency (0.78 ± 0.10) than P. piscicida incubated in the dark (0.32 ± 0.16), and photosynthetic inhibitors significantly decreased growth of recently fed populations. These results demonstrate a role of kleptoplastidic photosynthesis in enhancing growth in P. piscicida. However, when the prey alga R. sp. was depleted, light's stimulating effect on P. piscicida growth diminished quickly, coinciding with rapid disappearance of Rhodomonas‐derived pigments and RUBISCO from P. piscicida cells. Furthermore, the effect of light on growth was reversed after extended starvation, and starved light‐grown P. piscicida declined at a rate significantly greater than dark‐incubated cultures. The observed difference in rates of decline appeared to be attributable to light‐dependent cannibalism. Using a 5‐chloromethylfluorescein diacetate staining technique, cannibalistic grazing was observed after 7 days of starvation, at a rate four times greater under illumination than in the dark. The results from this study suggest that kleptoplastidy enhances growth of P. piscicida only in the presence of algal prey. When prey is absent, P. piscicida populations may become vulnerable to light‐stimulated cannibalism.  相似文献   

17.
18.
Aconophora compressa is a gregarious, sap-sucking insect that uses multiple host plant species. Nymphal host plant species (and variety) significantly affected nymphal survival, nymphal development rate and the subsequent size and fecundity of adults, with fiddlewood (Citharexylum spinosum) being significantly best in all respects. Nymphs that developed on a relatively poor host (Duranta erecta var “geisha girl”) and which were moved to fiddlewood as adults laid significantly fewer eggs (mean ± SE = 836 ± 130) than those that developed solely on fiddlewood (1,329 ± 105). Adults on geisha girl, regardless of having been reared as nymphs on fiddlewood or geisha girl, laid significantly fewer eggs (342 ± 83 and 317 ± 74, respectively) than adults on fiddlewood. A simple model that incorporates host plant related survival, development rate and fecundity suggests that the population dynamics of A. compressa are governed mainly by fiddlewood, the primary host. The results have general implications for understanding the population dynamics of herbivores that use multiple host plant species, and also for the way in which weed biological control host testing methods should be conducted. Handling Editor: Robert Glinwood  相似文献   

19.
Anthropogenic activities usually trigger changes in the population density of plants. Thus, land management practices can influence density‐dependent demographic parameters and species interactions. We investigated plant‐pollinator interactions and reproduction in Prosopis flexuosa, the largest tree species in the Central Monte desert of Argentina, an important economic and cultural resource for humans and a functionally prominent species. We hypothesized that reproductive output of P. flexuosa would be limited at low densities, and that exclusion of catle grazing would enhance population density and consequently interaction frequency with pollinators and reproductive success. The study was conducted in and around Ñacuñán Biosphere Reserve (Mendoza, Argentina), where cattle grazing has been excluded for over 35 years. Working in five pairs of protected and cattle grazed 1‐ha plots, we recorded density of adult trees, pollinator visitation frequency to inflorescences and seeds per inflorescence in focal trees. Adult tree density was higher in protected plots than in cattle grazed plots. Density of reproductive trees was positively correlated with seed production, suggesting positive density dependence for reproduction (Allee effect). Pollinator visitation to inflorescences and seed production was higher in protected plots compared with plots under cattle grazing. Suppression of anthropogenic degradation has resulted in higher adult tree density in protected plots, indirectly higher pollinator visitation to inflorescences and higher reproductive success of trees. Increased frequency of plant‐pollinator interactions and tree reproduction suggest success of management practices aimed at protecting P. flexuosa woodlands.  相似文献   

20.
Population dynamics are typically affected by a combination of density-independent and density-dependent factors, the latter of which have been conceptually and theoretically linked with how variable population sizes are over time—which in turn has been tied to how prone populations are to extinction. To address evidence for the occurrence of density dependence and its relationship with population size variability (pv), we quantified each of these for 126 populations of 8 species of Salmoniformes. Using random-effects models, we partitioned variation in the strength of density dependence and the magnitude of pv between and within species and estimated the correlation of density dependence and population size variability at both the between- and within-species levels. We found that variation in the strength of density dependence was predominately within species (I 2 = 0.47). In contrast, variation in population size variability was distributed both between and within species (I 2 = 0.40). Contrary to theoretical and conceptual expectations, the strength of density dependence and the magnitude of population size variability were positively correlated at the between species level (r = 0.90), although this estimate had 95 % credibility intervals (Bayesian analogues to confidence intervals) that overlapped zero. The within-species correlation between density dependence and population size variability was not distinguishable from zero. Given that density dependence for Salmoniformes was highly variable within species, we next determined the joint effects of intrinsic (density-dependent) and extrinsic (density-independent) factors on the population dynamics of a threatened salmonid, the Lahontan cutthroat trout (Oncorhynchus clarkii henshawi). We found that density-dependent and -independent factors additively contributed to population dynamics. This finding suggests that the observed within-species variability in density dependence might be attributable to local differences in the strength of density-independent factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号