首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Numerous studies have documented how prey may use antipredator strategies to reduce the risk of predation from a single predator. However, when a recolonizing predator enters an already complex predator—prey system, specific antipredator behaviors may conflict and avoidance of one predator may enhance vulnerability to another. We studied the patterns of prey selection by recolonizing wolves (Canis lupus) and cougars (Puma concolor) in response to prey resource selection in the northern Madison Range, Montana, USA. Elk (Cervus elaphus) were the primary prey for wolves, and mule deer (Odocoileus hemionus) were the primary prey for cougars, but elk made up an increasingly greater proportion of cougar kills annually. Although both predators preyed disproportionately on male elk, wolves were most likely to prey on males in poor physical condition. Although we found that the predators partitioned hunting habitats, structural complexity at wolf kill sites increased over time, whereas complexity of cougar kill sites decreased. We concluded that shifts by prey to structurally complex refugia were attempts by formerly naïve prey to lessen predation risk from wolves; nevertheless, shifting to more structurally complex refugia might have made prey more vulnerable to cougars. After a change in predator exposure, use of refugia may represent a compromise to minimize overall risk. As agencies formulate management strategies relative to wolf recolonization, the potential for interactive predation effects (i.e., facilitation or antagonism) should be considered.  相似文献   

2.
ABSTRACT Minimizing risk of predation from multiple predators can be difficult, particularly when the risk effects of one predator species may influence vulnerability to a second predator species. We decomposed spatial risk of predation in a 2-predator, 2-prey system into relative risk of encounter and, given an encounter, conditional relative risk of being killed. Then, we generated spatially explicit functions of total risk of predation for each prey species (elk [Cervus elaphus] and mule deer [Odocoileus hemionus]) by combining risks of encounter and kill. For both mule deer and elk, topographic and vegetation type effects, along with resource selection by their primary predator (cougars [Puma concolor] and wolves [Canis lupus], respectively), strongly influenced risk of encounter. Following an encounter, topographic and vegetation type effects altered the risk of predation for both ungulates. For mule deer, risk of direct predation was largely a function of cougar resource selection. However, for elk, risk of direct predation was not only a function of wolf occurrence, but also of habitat attributes that increased elk vulnerability to predation following an encounter. Our analysis of stage-based (i.e., encounter and kill) predation indicates that the risk effect of elk shifting to structurally complex habitat may ameliorate risk of direct predation by wolves but exacerbate risk of direct predation by cougars. Information on spatiotemporal patterns of predation will be become increasingly important as state agencies in the western United States face pressure to integrate predator and prey management.  相似文献   

3.
Ecological theory predicts that the diffuse risk cues generated by wide‐ranging, active predators should induce prey behavioural responses but not major, population‐ or community‐level consequences. We evaluated the non‐consumptive effects (NCEs) of an active predator, the grey wolf (Canis lupus), by simultaneously tracking wolves and the behaviour, body fat, and pregnancy of elk (Cervus elaphus), their primary prey in the Greater Yellowstone Ecosystem. When wolves approached within 1 km, elk increased their rates of movement, displacement and vigilance. Even in high‐risk areas, however, these encounters occurred only once every 9 days. Ultimately, despite 20‐fold variation in the frequency of encounters between wolves and individual elk, the risk of predation was not associated with elk body fat or pregnancy. Our findings suggest that the ecological consequences of actively hunting large carnivores, such as the wolf, are more likely transmitted by consumptive effects on prey survival than NCEs on prey behaviour.  相似文献   

4.
Field studies that rely on fixes from GPS‐collared predators to identify encounters with prey will often underestimate the frequency and strength of antipredator responses. These underestimation biases have several mechanistic causes. (1) Step bias: The distance between successive GPS fixes can be large, and encounters that occur during these intervals go undetected. This bias will generally be strongest for cursorial hunters that can rapidly cover large distances (e.g., wolves and African wild dogs) and when the interval between GPS fixes is long relative to the duration of a hunt. Step bias is amplified as the path travelled between successive GPS fixes deviates from a straight line. (2) Scatter bias: Only a small fraction of the predators in a population typically carry GPS collars, and prey encounters with uncollared predators go undetected unless a collared group‐mate is present. This bias will generally be stronger for fission–fusion hunters (e.g., spotted hyenas, wolves, and lions) than for highly cohesive hunters (e.g., African wild dogs), particularly when their group sizes are large. Step bias and scatter bias both cause underestimation of the frequency of antipredator responses. (3) Strength bias: Observations of prey in the absence of GPS fix from a collared predator will generally include a mixture of cases in which predators were truly absent and cases in which predators were present but not detected, which causes underestimation of the strength of antipredator responses. We quantified these biases with data from wolves and African wild dogs and found that fixes from GPS collars at 3‐h intervals underestimated the frequency and strength of antipredator responses by a factor >10. We reexamined the results of a recent study of the nonconsumptive effects of wolves on elk in light of these results and confirmed that predation risk has strong effects on elk dynamics by reducing the pregnancy rate.  相似文献   

5.
Human activity helps prey win the predator-prey space race   总被引:1,自引:0,他引:1  
Predator-prey interactions, including between large mammalian wildlife species, can be represented as a "space race", where prey try to minimize and predators maximize spatial overlap. Human activity can also influence the distribution of wildlife species. In particular, high-human disturbance can displace large carnivore predators, a trait-mediated direct effect. Predator displacement by humans could then indirectly benefit prey species by reducing predation risk, a trait-mediated indirect effect of humans that spatially decouples predators from prey. The purpose of this research was to test the hypothesis that high-human activity was displacing predators and thus indirectly creating spatial refuge for prey species, helping prey win the "space race". We measured the occurrence of eleven large mammal species (including humans and cattle) at 43 camera traps deployed on roads and trails in southwest Alberta, Canada. We tested species co-occurrence at camera sites using hierarchical cluster and nonmetric multidimensional scaling (NMS) analyses; and tested whether human activity, food and/or habitat influenced predator and prey species counts at camera sites using regression tree analysis. Cluster and NMS analysis indicated that at camera sites humans co-occurred with prey species more than predator species and predator species had relatively low co-occurrence with prey species. Regression tree analysis indicated that prey species were three times more abundant on roads and trails with >32 humans/day. However, predators were less abundant on roads and trails that exceeded 18 humans/day. Our results support the hypothesis that high-human activity displaced predators but not prey species, creating spatial refuge from predation. High-human activity on roads and trails (i.e., >18 humans/day) has the potential to interfere with predator-prey interactions via trait-mediated direct and indirect effects. We urge scientist and managers to carefully consider and quantify the trait-mediated indirect effects of humans, in addition to direct effects, when assessing human impacts on wildlife and ecosystems.  相似文献   

6.
Several conceptual models describing patterns of prey selection by predators have been proposed, but such models rarely have been tested empirically, particularly with terrestrial carnivores. We examined patterns of prey selection by sympatric wolves ( Canis lupus ) and cougars ( Puma concolor ) to determine i) if both predators selected disadvantaged prey disproportionately from the prey population, and ii) if the specific nature and intensity of prey selection differed according to disparity in hunting behavior between predator species. We documented prey characteristics and kill site attributes of predator kills during winters 1999–2001 in Idaho, and located 120 wolf-killed and 98 cougar-killed ungulates on our study site. Elk ( Cervus elephus ) were the primary prey for both predators, followed by mule deer ( Odocoileus hemionus ). Both predators preyed disproportionately on elk calves and old individuals; among mule deer, wolves appeared to select for fawns, whereas cougars killed primarily adults. Nutritional status of prey, as determined by percent femur marrow fat, was consistently poorer in wolf-killed prey. We found that wolf kills occurred in habitat that was more reflective of the entire study area than cougar kills, suggesting that the coursing hunting behavior of wolves likely operated on a larger spatial scale than did the ambush hunting strategy of cougars. We concluded that the disparity in prey selection and hunting habitat between predators probably was a function of predator-specific hunting behavior and capture success, where the longer prey chases and lower capture success of wolf packs mandated a stronger selection for disadvantaged prey. For cougars, prey selection seemed to be limited primarily by prey size, which could be a function of the solitary hunting behavior of this species and the risks associated with capturing prime-aged prey.  相似文献   

7.
Many ecosystems contain sympatric predator species that hunt in different places and times. We tested whether this provides vacant hunting domains, places and times where and when predators are least active, that prey use to minimize threats from multiple predators simultaneously. We measured how northern Yellowstone elk (Cervus elaphus) responded to wolves (Canis lupus) and cougars (Puma concolor), and found that elk selected for areas outside the high‐risk domains of both predators consistent with the vacant domain hypothesis. This enabled elk to avoid one predator without necessarily increasing its exposure to the other. Our results demonstrate how the diel cycle can serve as a key axis of the predator hunting domain that prey exploit to manage predation risk from multiple sources. We argue that a multi‐predator, spatiotemporal framework is vital to understand the causes and consequences of prey spatial response to predation risk in environments with more than one predator.  相似文献   

8.
The spatiotemporal game between predators and prey is a fundamental process governing their distribution dynamics. Players may adopt different tactics as the associated costs and benefits change through time. Yet few studies have investigated the potentially simultaneous and dynamic nature of movement tactics used by both players. It is particularly unclear to what extent perceived predation risk mediates the fine‐scale distribution of large and dangerous prey, which are mostly driven by bottom–up, resource‐related processes. We built habitat use and movement models based on 10 years of monitoring GPS‐collared grey wolves Canis lupus and plains bison Bison bison bison in Prince Albert National Park, Canada, to investigate the predator–large prey game in a multi‐prey system. Bison did not underuse patches of high‐quality vegetation at any time during the seasonal cycle even though wolves were selectively patrolling these areas. Rather, in at least one season, bison engaged in complex tactics comprised of proactive responses to the long‐term distribution (risky places) and reactive responses to the immediate proximity (risky times) of their opponent. In summer–autumn, bison reduced the time spent in food‐rich patches as both the long‐term use and the immediate proximity of wolves increased. By demonstrating that wolf distribution triggers patch abandonment by bison, we provide a key element in support of the shell game hypothesis – where prey move constantly to avoid predators attempting to anticipate their location. In winter, a season of relatively high energetic stress, bison no longer abandoned food‐rich patches as predation risk increased, while no bison responses to wolves were observed in spring–summer. Our work demonstrates the highly dynamic and complex nature of the predator–large prey spatiotemporal game, a key trait‐mediated mechanism by which trophic interactions structure ecological communities.  相似文献   

9.
Population increases of primary prey can negatively impact alternate prey populations via demographic and behavioural responses of a shared predator through apparent competition. Seasonal variation in prey selection patterns by predators also can affect secondary and incidental prey by reducing spatial separation. Global warming and landscape changes in Alberta's bitumen sands have resulted in prey enrichment, which is changing the large mammal predator–prey system and causing declines in woodland caribou Rangifer tarandus caribou populations. We assessed seasonal patterns of prey use and spatial selection by wolves Canis lupus in two woodland caribou ranges in northeastern Alberta, Canada, that have undergone prey enrichment following recent white‐tailed deer Odocoileus virginianus invasion. We determined whether risk of predation for caribou (incidental prey) and the proportion of wolf‐caused‐caribou mortalities varied with season. We found that wolves showed seasonal variation in primary prey use, with deer and beaver Castor canadensis being the most common prey items in wolf diet in winter and summer, respectively. These seasonal dietary patterns were reflected in seasonal wolf spatial resource selection and resulted in contrasting spatial relationships between wolves and caribou. During winter, wolf selection for areas used by deer maintained strong spatial separation between wolves and caribou, whereas wolf selection for areas used by beaver in summer increased the overlap with caribou. Changing patterns in wolf resource selection were reflected by caribou mortality patterns, with 76.2% of 42 adult female caribou mortalities occurring in summer. Understanding seasonal patterns of predation following prey enrichment in a multiprey system is essential when assessing the effect of predation on an incidental prey species. Our results support the conclusion that wolves are proximately responsible for woodland caribou population declines throughout much of their range.  相似文献   

10.
Because some native ungulates have lived without top predators for generations, it has been uncertain whether runaway predation would occur when predators are newly restored to these systems. We show that landscape features and vegetation, which influence predator detection and capture of prey, shape large-scale patterns of predation in a newly restored predator–prey system. We analysed the spatial distribution of wolf ( Canis lupus ) predation on elk ( Cervus elaphus ) on the Northern Range of Yellowstone National Park over 10 consecutive winters. The influence of wolf distribution on kill sites diminished over the course of this study, a result that was likely caused by territorial constraints on wolf distribution. In contrast, landscape factors strongly influenced kill sites, creating distinct hunting grounds and prey refugia. Elk in this newly restored predator–prey system should be able to mediate their risk of predation by movement and habitat selection across a heterogeneous risk landscape.  相似文献   

11.
Predation is a fundamental ecological and evolutionary process that varies in space, and the avoidance of predation risk is of central importance in foraging theory. While there has been a recent growth of approaches to spatially model predation risk, these approaches lack an adequate mechanistic framework that can be applied to real landscapes. In this paper we show how predation risk can be decomposed into encounter and attack stages, and modeled spatially using resource selection functions (RSF) and resource selection probability functions (RSPF). We use this approach to compare the effects of landscape attributes on the relative probability of encounter, the conditional probability of death given encounter, and overall wolf and elk resource selection to test whether predation risk is simply equivalent to location of the predator. We then combine the probability of encounter and conditional probability of death into a spatially explicit function of predation risk following Lima and Dill's reformulation of Holling's functional response. We illustrate this approach in a wolf–elk system in and adjacent to Banff National Park, Alberta, Canada. In this system we found that the odds of elk being encountered by wolves was 1.3 times higher in pine forest and 4.1 times less in grasslands than other habitats. The relative odds of being killed in pine forests, given an encounter, increased by 1.2. Other habitats, such as grasslands, afforded elk reduced odds (4.1 times less) of being encountered and subsequently killed (1.4 times less) by wolves. Our approach illustrates that predation risk is not necessarily equivalent to just where predators are found. We show that landscape attributes can render prey more or less susceptible to predation and effects of landscape features can differ between the encounter and attack stages of predation. We conclude by suggesting applications of our approach to model predator–prey dynamics using spatial predation risk functions in theoretical and applied settings.  相似文献   

12.
Large carnivores can either directly influence ungulate populations or indirectly affect their behaviour. Knowledge from European systems, in contrast to North American systems, on how this might lead to cascading effects on lower trophic levels is virtually absent. We studied whether wolves Canis lupus via density‐mediated and behaviorally‐mediated effects on their ungulate prey species influence patterns of browsing and tree regeneration inside the Bia?owie?a National Park, Poland. Browsing intensity of tree saplings (height class < 150 cm), irrespective of tree species or forest type, was lower inside a wolf core area (50.5%) where predator presence is highest, than in the remainder of the wolf pack’s home range (58.3%). Additionally, browsing intensity was reduced when the amount of coarse woody debris (CWD), which can act as a ?ungulate escape impediment?, increased (within 5‐m radius) inside the wolf core area. No relationship existed outside the core area. As a result, the proportion of trees growing out of herbivore control increased more strongly with increasing amount of CWD inside compared to outside the wolf core area. This suggests that next to direct effects of wolves on ungulate density caused by a higher predation pressure inside the core area, risk effects are important and are enhanced by habitat characteristics. These results indicate that behaviorally‐mediated effects of predators on prey can become more important than density‐mediated effects in affecting lower trophic levels. This is the first study we are aware of, that shows CWD can create fine‐scale risk effects on ungulates with the potential for cascading effects of large predators on patterns of tree regeneration for a European forest system. This knowledge broadens the discussion on how the impact of large predators on ecosystem functioning depends on the physical landscape, by illustrating these effects for a system which largely contrasts in this respect to the North American systems.  相似文献   

13.
Laura R. Prugh  Stephen M. Arthur 《Oikos》2015,124(9):1241-1250
Large predators often suppress ungulate population growth, but they may also suppress the abundance of smaller predators that prey on neonatal ungulates. Antagonistic interactions among predators may therefore need to be integrated into predator–prey models to effectively manage ungulate–predator systems. We present a modeling framework that examines the net impact of interacting predators on the population growth rate of shared prey, using interactions among wolves Canis lupus, coyotes Canis latrans and Dall sheep Ovis dalli dalli as a case study. Wolf control is currently employed on approximately 16 million ha in Alaska to increase the abundance of ungulates for human harvest. We hypothesized that the positive effects of wolf control on Dall sheep population growth could be counteracted by increased levels of predation by coyotes. Coyotes and Dall sheep adult females (ewes) and lambs were radiocollared in the Alaska Range from 1999–2005 to estimate fecundity, age‐specific survival rates, and causes of mortality in an area without wolf control. We used stage‐structured population models to simulate the net effect of wolf control on Dall sheep population growth (λ). Our models accounted for stage‐specific predation rates by wolves and coyotes, compensatory mortality, and the potential release of coyote populations due to wolf control. Wolves were the main predators of ewes, coyotes were the main predators of lambs, and wolves were the main source of mortality for coyotes. Population models predicted that wolf control could increase sheep λ by 4% per year in the absence of mesopredator release. However, if wolf control released coyote populations, our models predicted that sheep λ could decrease by up to 3% per year. These results highlight the importance of integrating antagonistic interactions among predators into predator–prey models, because the net effect of predator management on shared prey can depend critically on the strength of mesopredator release.  相似文献   

14.
The snow leopard Panthera uncia coexists with the wolf Canis lupus throughout most of its distribution range. We analysed the food habits of snow leopards and wolves in their sympatric range in the Karakoram mountains of Pakistan. A total of 131 genotyped scats (N?=?74, snow leopard; N?=?57, Tibetan wolf) were collected during the cold periods (i.e. winter and spring) of 2011 and 2012 in the Hushey valley. Large mammals, i.e. livestock and ibex, accounted for 84.8 and 83.1% of the diet (relative frequency) of the snow leopard and the wolf, respectively. Domestic prey was the staple of the diet of both snow leopards (66.6%) and wolves (75.1%). Ibex Capra ibex, the only wild ungulate in our study area, contributed 18.2 and 16.9% of relative frequencies in the diets of the snow leopard and the wolf, respectively. In winter, the snow leopard heavily relied on domestic sheep (43.3%) for food, whereas the wolf preyed mainly on domestic goats (43.4%). Differently from other study areas, both snow leopards and wolves showed no apparent prey preference (Jacobs index: snow leopard min. ??0.098, max. 0.102; Tibetan wolf min. ??0.120, max. 0.03). In human depauperate areas, with livestock and only a few wild prey, should competitive interactions arise, two main scenarios could be expected, with either predator as a winner. In both cases, the best solution could primarily impinge on habitat restoration, so that a balance could be found between these predators, who have already coexisted for thousands of years.  相似文献   

15.
The mechanism underlying olfactory predator identification may be relatively experience‐independent, or it may rely on specific experience with predators. A mechanism by which prey might identify novel predators relies on the inevitable creation of sulfurous metabolites that are then excreted in the urine of carnivorous mammals. We tested whether free‐living, yellow‐bellied marmots (Marmota flaviventris) and mid‐sized herbivores that fall prey to a variety of carnivorous mammals could discriminate herbivore (elk—Cervus elephas) urine from predator (red fox—Vulpes vulpes, coyote—Canis latrans, mountain lion—Felis concolor, wolf—Canis lupus) urine, a novel herbivore (moose—Alces alces), and a distilled water control. We further asked how specific this assessment was by testing whether marmots responded differently to predators representing different levels of risk and to familiar vs. unfamiliar predators. We found that marmots responded more to urine from coyotes (a familiar predator on adults), mountain lions (a potentially unfamiliar predator that could kill adults) and wolves (a locally extinct predator that could kill adults) than to elk urine (a non‐predator). Red fox (a predator that poses a risk only to recently emerged marmot pups) urine elicited a less substantial (but not significantly so) response than coyote urine. Marmots can identify predators, even novel ones, using olfactory cues, suggesting that experience with a specific predator is not required to identify potential threats.  相似文献   

16.
We investigated wolf feeding habits in relation to the abundance of wild and domestic ungulates to test the hypothesis that large prey are preferred and that their abundance affects the use of other food categories and diet breadth. We determined diet composition by scat analysis from December 1987 to December 1992. The research was carried out in three study areas located in northern Italy and characterised by marked differences in wild and domestic ungulate abundance. In study area A (low wild and domestic ungulate availability) fruits, livestock, other vertebrates and wild ungulates made up the bulk of the diet (71% in volume). In area B (high availability of livestock) wolf diet was mainly based on sheep and wild boars (80% in volume). In study area C (high availability of wild ungulates) wild ungulates were the main food of wolves (90% in volume). Significant differences were found among study areas in the mean percentage volume of all food categories and in particular for wild ungulates, livestock, other vertebrates and fruits (p < 0.0001 in all cases). Diet breadth decreased in areas with high availability of large wild and domestic herbivores. The use of livestock species was lower where there was high abundance, richness and diversity of the wild ungulate guild. Selection for wild ungulate species was partially affected by their abundance: however other factors as prey social behaviour, adaptability to the habitat (for introduced species), and body size could have an important role in species selection by wolves. In particular in area C wild boars were selected for, roe and red deers avoided, and fallow deers and mouflons used as available. Livestock species were used in relation to their abundance and accessibility, in particular sheep were selected for and cattle avoided; but if calves bom in the pastures were considered as the only available cattle, they were selected for and sheep were used as available. Large and in particular wild herbivores were found to be of great importance for the wolf population maintenance in northern Italy, one of the most important recovery areas of Mediterranean wolves.  相似文献   

17.
We studied wolf (Canis lupus) diet for three different landscapes in the north-western Iberian Peninsula, differing in land uses and availability of food for wolves. We examined 2740 scats, collected over a period of 4 years, in order to describe wolf diet, its geographic variation, and trophic preferences. The most consumed species were wild pony, roe deer and cattle. We observed differences in wolf diet among the three study sites, related to the availability and accessibility of food resources in each habitat. For the two study sites in northern and central Galicia, wolves showed similar diet, with high occurrence of wild pony (37 vs. 34%) and cattle (20 vs. 23%), but differing in the consumption of wild ungulates (16 vs. 8%) and carrion (7 vs. 14%). Wolf diet in eastern Galicia’s mountain ranges was entirely different, due to the higher consumption of wild ungulates (70%). Wolves showed clear prey selection patterns. Between wild ponies and livestock, wolves positively selected ponies. Among wild ungulates, wolves positively selected roe deer. Wild pony and roe deer are key species for wolf feeding in Galicia. In the Galician wild pony range, ponies are the main food for wolves. Given that the availability of wild ponies may contribute to the decrease in wolf predation on cattle, it is essential to develop innovative administrative decisions in such areas to preserve this traditional equid population. In the same way, the population of roe deer should be strengthened in the livestock areas outside the range of wild pony.  相似文献   

18.
Animal species differ considerably in their response to predation risks. Interspecific variability in prey behaviour and morphology can alter cascading effects of predators on ecosystem structure and functioning. We tested whether species‐specific morphological defenses may affect responses of leaf litter consuming invertebrate prey to sit‐and‐wait predators, the odonate Cordulegaster boltonii larvae, in aquatic food webs. Partly or completely blocking the predator mouthparts (mandibles and/or extensible labium), thus eliminating consumptive (i.e. lethal) predator effects, we created a gradient of predator‐prey interaction intensities (no predator < predator – no attack < predator – non‐lethal attacks < lethal predator). A field experiment was first used to assess both consumptive and non‐consumptive predator effects on leaf litter decomposition and prey abundances. Laboratory microcosms were then used to examine behavioural responses of armored and non‐armored prey to predation risk and their consequences on litter decomposition. Results show that armored and non‐armored prey responded to both acute (predator – non‐lethal attacks) and chronic (predator – no attack) predation risks. Acute predation risk had stronger effects on litter decomposition, prey feeding rate and prey habitat use than predator presence alone (chronic predation risk). Predator presence induced a reduction in feeding activity (i.e. resource consumption) of both prey types but a shift to predator‐free habitat patches in non‐armored detritivores only. Non‐consumptive predator effects on prey subsequently decreased litter decomposition rate. Species‐specific prey morphological defenses and behaviour should thus be considered when studying non‐consumptive predator effects on prey community structure and ecosystem functioning.  相似文献   

19.
Top-down effects of apex predators are modulated by human impacts on community composition and species abundances. Consequently, research supporting top-down effects of apex predators occurs almost entirely within protected areas rather than the multi-use landscapes dominating modern ecosystems. Here, we developed an integrated population model to disentangle the concurrent contributions of a reintroduced apex predator, the grey wolf, human hunting and prey abundances on vital rates and abundance of a subordinate apex predator, the puma. Increasing wolf numbers had strong negative effects on puma fecundity, and subadult and adult survival. Puma survival was also influenced by density dependence. Overall, puma dynamics in our multi-use landscape were more strongly influenced by top-down forces exhibited by a reintroduced apex predator, than by human hunting or bottom-up forces (prey abundance) subsidized by humans. Quantitatively, the average annual impact of human hunting on equilibrium puma abundance was equivalent to the effects of 20 wolves. Historically, wolves may have limited pumas across North America and dictated puma scarcity in systems lacking sufficient refugia to mitigate the effects of competition.  相似文献   

20.
Predators directly impact prey populations through lethal encounters, but understanding nonlethal, indirect effects is also critical because foraging animals often face trade‐offs between predator avoidance and energy intake. Quantifying these indirect effects can be difficult even when it is possible to monitor individuals that regularly interact. Our goal was to understand how movement and resource selection of a predator (wolves; Canis lupus) influence the movement behavior of a prey species (moose; Alces alces). We tested whether moose avoided areas with high predicted wolf resource use in two study areas with differing prey compositions, whether avoidance patterns varied seasonally, and whether daily activity budgets of moose and wolves aligned temporally. We deployed GPS collars on both species at two sites in northern Minnesota. We created seasonal resource selection functions (RSF) for wolves and modeled the relationship between moose first‐passage time (FPT), a method that discerns alterations in movement rates, and wolf RSF values. Larger FPT values suggest rest/foraging, whereas shorter FPT values indicate travel/fleeing. We found that the movements of moose and wolves peaked at similar times of day in both study areas. Moose FPTs were 45% lower in areas most selected for by wolves relative to those avoided. The relationship between wolf RSF and moose FPT was nonlinear and varied seasonally. Differences in FPT between low and high RSF values were greatest in winter (?82.1%) and spring (?57.6%) in northeastern Minnesota and similar for all seasons in the Voyageurs National Park ecosystem. In northeastern Minnesota, where moose comprise a larger percentage of wolf diet, the relationship between moose FPT and wolf RSF was more pronounced (ave. across seasons: ?60.1%) than the Voyageurs National Park ecosystem (?30.4%). These findings highlight the role wolves can play in determining moose behavior, whereby moose spend less time in areas with higher predicted likelihood of wolf resource selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号