共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological and behavioral differences between sexes are commonplace throughout the animal kingdom. Body size is one of the most obvious sex differences frequently found in snakes. However, the developmental origins of size differences in many species, including snakes, are not well known. We examined post-natal variation in sexual size dimorphism in garter snakes Thamnophis sirtalis . The weights, body and tail lengths, and head sizes of male and female neonates born to mothers collected from ecologically dissimilar habitats on Beaver Island, Lake Michigan were compared. Sexual size dimorphism was prominent. Overall, males had significantly longer bodies and tails than females. Females were significantly heavier and had larger heads than male snakes. Maternal site affected head but not body measurements, perhaps due to differences in prey availability. The body condition of maternal females predicted neonatal body length. Significant litter variation suggests heritable variation in morphological traits possibly correlated with feeding success and survival. 相似文献
2.
Stevan J. Arnold Patrick C. Phillips 《Evolution; international journal of organic evolution》1999,53(5):1516-1527
The time-scale for the evolution of additive genetic variance-covariance matrices (G-matrices) is a crucial issue in evolutionary biology. If the evolution of G-matrices is slow enough, we can use standard multivariate equations to model drift and selection response on evolutionary time scales. We compared the G-matrices for meristic traits in two populations of gaiter snakes (Thamnophis elegans) with an apparent separation time of 2 million years. Despite considerable divergence in the meristic traits, foraging habits, and diet, these populations show conservation of structure in their G-matrices. Using Flury's hierarchial approach to matrix comparisons, we found that the populations have retained the principal components (eigenvectors) of their G-matrices, but their eigenvalues have diverged. In contrast, we were unable to reject the hypothesis of equal environmental matrices (E-matrices) for these populations. We propose that a conserved pattern of multivariate stabilizing selection may have contributed to conservation of G- and E-matrix structure during the divergence of these populations. 相似文献
3.
Transposable element activity is thought to be responsible for a large portion of all mutations, but its influence on the evolution of populations has not been well studied. Using mutation accumulation experiments with the nematode Caenorhabditis elegans, we investigated the impact of transposable element activity on the production of mutational variances and covariances. The experiments involved the use of two mutator strains (RNAi-deficient mutants) that are characterized by high levels of germline transposition, as well as the Bristol N2 strain, which lacks germline transposition. We found that transposition led to an increase in mutational heritabilities, as well as to the intensification of correlation patterns observed in the absence of transposition. No mutational trade-offs were detected and mutations generally had a deleterious effect on components of fitness. We also tested whether the pattern of mutational covariation could be used to predict observed patterns of population divergence in this species. Using 15 natural populations, we found that population divergence of C. elegans in multivariate phenotypic space occurred in directions only partially concordant with mutation, and thus other evolutionary factors, such as natural selection and genetic drift, must be acting to produce divergence within this species. Our results suggest that mutations induced by mobile elements in C. elegans are similar to other spontaneous mutations with respect to their contribution to the microevolution of quantitative traits. 相似文献
4.
Abstract Patterns of genetic variation and covariation strongly affect the rate and direction of evolutionary change by limiting the amount and form of genetic variation available to natural selection. We studied evolution of morphological variance-covariance structure among seven populations of house finches (Carpodacus mexicanus) with a known phylogenetic history. We examined the relationship between within- and among-population covariance structure and, in particular, tested the concordance between hierarchical changes in morphological variance-covariance structure and phylogenetic history of this species. We found that among-population morphological divergence in either males or females did not follow the within-population covariance patterns. Hierarchical patterns of similarity in morphological covariance matrices were not congruent with a priori defined historical pattern of population divergence. Both of these results point to the lack of proportionality in morphological covariance structure of finch populations, suggesting that random drift alone is unlikely to account for observed divergence. Furthermore, drift alone cannot explain the sex differences in within- and among-population covariance patterns or sex-specific patterns of evolution of covariance structure. Our results suggest that extensive among-population variation in sexual dimorphism in morphological covariance structure was produced by population differences in local selection pressures acting on each sex. 相似文献
5.
An important issue in evolutionary biology is understanding the pattern of G matrix variation in natural populations. We estimated four G matrices based on the morphological traits of two cricket species, Gryllus firmus and G. pennsylvanicus, each reared in two environments. We used three matrix comparison approaches, including the Flury hierarchy, to improve our ability to perceive all aspects of matrix variation. Our results demonstrate that different methods perceive different aspects of the matrices, which suggests that, until more is known about these methods, future studies should use several different statistical approaches. We also found that the differences in G matrices within a species can be larger than the differences between species. We conclude that the expression of the genetic architecture can vary with the environment and that future studies should compare G matrices across several environments. We also conclude that G matrices can be conserved at the level of closely related species. 相似文献
6.
Common principal components (CPC) analysis is a new tool for the comparison of phenotypic and genetic variance-covariance matrices. CPC was developed as a method of data summarization, but frequently biologists would like to use the method to detect analogous patterns of trait correlation in multiple populations or species. To investigate the properties of CPC, we simulated data that reflect a set of causal factors. The CPC method performs as expected from a statistical point of view, but often gives results that are contrary to biological intuition. In general, CPC tends to underestimate the degree of structure that matrices share. Differences of trait variances and covariances due to a difference in a single causal factor in two otherwise identically structured datasets often cause CPC to declare the two datasets unrelated. Conversely, CPC could identify datasets as having the same structure when causal factors are different. Reordering of vectors before analysis can aid in the detection of patterns. We urge caution in the biological interpretation of CPC analysis results. 相似文献
7.
Hamzeh Oraie Nasrullah Rastegar-Pouyani Azar Khosravani Eskandar Rastegar-Pouyani 《Zoology in the Middle East.》2013,59(4):302-307
Twenty-three morphological features of 140 specimens of Ophisops elegans were analysed in order to identify sexual dimorphism in west and northwestern populations of Iran. Sexual dimorphism is significant (P<0.05) in nearly all metric features except for trunk length (TL) and length of widest part of belly (LWB), and in only two meristic characters, the number of dorsal scales around mid-body (DSN) and the number of femoral pores (FPN). Males have a relatively longer snout-vent length (SVL) than females and males have generally relatively larger heads compared to females. 相似文献
8.
9.
Because of its importance in directing evolutionary trajectories, there has been considerable interest in comparing variation among genetic variance-covariance (G) matrices. Numerous statistical approaches have been suggested but no general analysis of the relationship among these methods has previously been published. In this study, we used data from a half-sib experiment and simulations to explore the results of applying eight tests (T method, modified Mantel test, Bartlett's test, Flury hierarchy, jackknife-manova, jackknife-eigenvalue test, random skewers, selection skewers). Whereas a randomization approach produced acceptable estimates, those from a bootstrap were typically unacceptable and we recommend randomization as the preferred method. All methods except the jackknife-eigenvalue test gave similar results although a fine-scale analysis suggested that the former group can be subdivided into two or possibly three groups, hierarchical tests, skewers and the rest (jackknife-manova, modified Mantel, T method, probably Bartlett's). An advantage of the jackknife methods is that they permit tests of association with other factors, such as in this case, temperature and sex. We recommend applying all the tests described in this article, with the exception of the T method, and provide R functions for this purpose. 相似文献
10.
The expression of secondary sexual traits in females has often been attributed to a correlated response to selection on male traits. In rare cases, females have secondary sexual traits that are not homologous structures to secondary sexual traits in males and are thus less likely to have evolved in females because of correlated selection. In this study, we used the dung beetle Onthophagus sagittarius, a species with sex‐specific horns, to examine the environmental and quantitative genetic control of horn expression in males and females. Offspring subjected to different brood mass manipulations (dung addition/removal) were found to differ significantly in body size. Brood mass manipulation also had a significant effect on the length of male horns; however, female horn length was found to be relatively impervious to the treatment, showing stronger patterns of additive genetic variance than males. We found no correlations between horn expression in males and females. We therefore conclude that the horns of O. sagittarius females are unlikely to result from genetic correlations between males and females. Rather, our data suggest that they may be under independent genetic control. 相似文献
11.
Patrick C. Phillips Stevan J. Arnold 《Evolution; international journal of organic evolution》1999,53(5):1506-1515
The comparison of additive genetic variance-covariance matrices (G-matrices) is an increasingly popular exercise in evolutionary biology because the evolution of the G-matrix is central to the issue of persistence of genetic constraints and to the use of dynamic models in an evolutionary time frame. The comparison of G-matrices is a nontrivial statistical problem because family structure induces nonindependence among the elements in each matrix. Past solutions to the problem of G-matrix comparison have dealt with this problem, with varying success, but have tested a single null hypothesis (matrix equality or matrix dissimilarity). Because matrices can differ in many ways, several hypotheses are of interest in matrix comparisons. Flury (1988) has provided an approach to matrix comparison in which a variety of hypotheses are tested, including the two extreme hypotheses prevalent in the evolutionary literature. The hypotheses are arranged in a hierarchy and involve comparisons of both the principal components (eigenvectors) and eigenvalues of the matrix. We adapt Flury's hierarchy of tests to the problem of comparing G-matrices by using randomization testing to account for nonindependence induced by family structure. Software has been developed for carrying out this analysis for both genetic and phenotypic data. The method is illustrated with a garter snake test case. 相似文献
12.
13.
Fitness depends on both the resources that individuals acquire and the allocation of those resources to traits that influence survival and reproduction. Optimal resource allocation differs between females and males as a consequence of their fundamentally different reproductive strategies. However, because most traits have a common genetic basis between the sexes, conflicting selection between the sexes over resource allocation can constrain the evolution of optimal allocation within each sex, and generate trade‐offs for fitness between them (i.e. ‘sexual antagonism’ or ‘intralocus sexual conflict’). The theory of resource acquisition and allocation provides an influential framework for linking genetic variation in acquisition and allocation to empirical evidence of trade‐offs between distinct life‐history traits. However, these models have not considered the emergence of trade‐offs within the context of sexual dimorphism, where they are expected to be particularly common. Here, we extend acquisition–allocation theory and develop a quantitative genetic framework for predicting genetically based trade‐offs between life‐history traits within sexes and between female and male fitness. Our models demonstrate that empirically measurable evidence of sexually antagonistic fitness variation should depend upon three interacting factors that may vary between populations: (1) the genetic variances and between‐sex covariances for resource acquisition and allocation traits, (2) condition‐dependent expression of resource allocation traits and (3) sex differences in selection on the allocation of resource to different fitness components. 相似文献
14.
Identifying links between phenotypic attributes and fitness is a primary goal of reproductive ecology. Differences in within-year patterns of body condition between sexes of gartersnakes in relation to reproduction and growth are not fully understood. We conducted an 11-year field study of body condition and growth rate of the giant gartersnake Thamnophis gigas across 13 study areas in the Central Valley of California, USA. We developed a priori mixed effects models of body condition index (BCI), which included covariates of time, sex and snout–vent length and reported the best-approximating models using an information theoretic approach. Also, we developed models of growth rate index (GRI) using covariates of sex and periods based on reproductive behavior. The largest difference in BCI between sexes, as predicted by a non-linear (cubic) time model, occurred during the mating period when female body condition (0.014±0.001 se ) was substantially greater than males (−0.027±0.002 se ). Males likely allocated energy to search for mates, while females likely stored energy for embryonic development. We also provided evidence that males use more body energy reserves than females during hibernation, perhaps because of different body temperatures between sexes. We found GRI of male snakes was substantially lower during the mating period than during a non-mating period, which indicated that a trade-off existed between searching for mates and growth. These findings contribute to our understanding of snake ecology in a Mediterranean climate. 相似文献
15.
The independent evolution of males and females is typically constrained by shared genetic variance. Despite substantial research, we still know little about the evolution of cross‐sex genetic covariance and its standardized measure, the cross‐sex genetic correlation (rMF). In particular, it is unclear if rMF tend to vary with age. We compiled 28 traits for which ontogenetic trends in rMF were documented. Decreases in rMF with age were observed significantly more often than increases and the mean effect size for the relationship between rMF and age was large and negative. This suggests that sexual dimorphism (SD) may typically evolve more readily for phenotypes expressed later in ontogeny and that evolutionary inferences related to the evolution of SD should be limited to the ontogenetic stage at which rMF was estimated. Knowledge about ontogenetic variation in rMF should help improving our understanding of evolutionary patterns related to SD and the resolution of intralocus sexual conflicts. 相似文献
16.
Highly variable microsatellite loci were employed to study the mating system of the sexually dimorphic Gulf pipefish Syngnathus scovelli . In this species, like others in the family Syngnathidae, 'pregnant' males provide all parental care. Gulf pipefish were collected from one locale in the northern Gulf of Mexico, and internally carried broods of 40 pregnant males were analysed genetically. By comparing multilocus microsatellite fingerprints for the inferred mothers against expected genotypic distributions from the population sample, it was determined that: (i) only one male had received eggs from more than a single female; and (ii) on two separate occasions, two different males had received eggs from the same female. Given the high power to detect multiple matings by males, the first finding indicates that only rarely are individual males impregnated by multiple females during the course of a pregnancy. Conversely, given the lower power to detect multiple matings by females due to sampling constraints, the second finding suggests a high frequency of multiple successful matings by females. Thus, this population of Gulf pipefish displays a polyandrous genetic mating system. The relevance of these genetic findings is discussed with regard to the evolution of secondary sex traits in this species, and in other syngnathids. 相似文献
18.
Takafumi Katsumura Shoji Oda Shigeki Nakagome Tsunehiko Hanihara Hiroshi Kataoka Hiroshi Mitani Shoji Kawamura Hiroki Oota 《Proceedings. Biological sciences / The Royal Society》2014,281(1797)
Sexual dimorphisms, which are phenotypic differences between males and females, are driven by sexual selection. Interestingly, sexually selected traits show geographical variations within species despite strong directional selective pressures. This paradox has eluded many evolutionary biologists for some time, and several models have been proposed (e.g. ‘indicator model’ and ‘trade-off model’). However, disentangling which of these theories explains empirical patterns remains difficult, because genetic polymorphisms that cause variation in sexual differences are still unknown. In this study, we show that polymorphisms in cytochrome P450 (CYP) 1B1, which encodes a xenobiotic-metabolizing enzyme, are associated with geographical differences in sexual dimorphism in the anal fin morphology of medaka fish (Oryzias latipes). Biochemical assays and genetic cross experiments show that high- and low-activity CYP1B1 alleles enhanced and declined sex differences in anal fin shapes, respectively. Behavioural and phylogenetic analyses suggest maintenance of the high-activity allele by sexual selection, whereas the low-activity allele possibly has experienced positive selection due to by-product effects of CYP1B1 in inferred ancestral populations. The present data can elucidate evolutionary mechanisms behind genetic variations in sexual dimorphism and indicate trade-off interactions between two distinct mechanisms acting on the two alleles with pleiotropic effects of xenobiotic-metabolizing enzymes. 相似文献
19.
The mechanisms underlying genetic associations have important consequences for evolutionary outcomes, but distinguishing linkage from pleiotropy is often difficult. Here, we use a fine mapping approach to determine the genetic basis of association between cytonuclear male sterility and other floral traits in Mimulus hybrids. Previous work has shown that male sterility in hybrids between Mimulus guttatus and Mimulus nasutus is due to interactions between a mitochondrial gene from M. guttatus and two tightly linked nuclear restorer alleles on Linkage Group 7, and that male sterility is associated with reduced corolla size. In the present study, we generated a set of nearly isogenic lines segregating for the restorer region and male sterility, but with unique flanking introgressions. Male-sterile flowers had significantly smaller corollas, longer styles and greater stigmatic exsertion than fertile flowers. Because these effects were significant regardless of the genotypic composition of introgressions flanking the restorer region, they suggest that these floral differences are a direct byproduct of the genetic incompatibility causing anther abortion. In addition, we found a non-significant but intriguing trend for male-sterile plants to produce more seeds per flower than fertile siblings after supplemental pollination. Such pleiotropic effects may underlie the corolla dimorphism frequently observed in gynodioecious taxa and may affect selection on cytoplasmic male sterility genes when they initially arise. 相似文献
20.
Alan R. Rogers Arindam Mukherjee 《Evolution; international journal of organic evolution》1992,46(1):226-234
A classical data set is used to predict the effect of selection on sexual dimorphism and on the population means of three characters—stature, span, and cubit—in humans. Given selection of equal intensity, the population means of stature and of cubit should respond more than 60 times as fast as dimorphism in these characters. The population mean of span should also respond far more rapidly than dimorphism, but no numerical estimate of the ratio of these rates was possible. These results imply that sexual dimorphism in these characters can evolve only very slowly. Consequently, hypotheses about the causes of sexual dimorphism cannot be tested by comparing the dimorphism of different human societies. It has been suggested that primate sexual dimorphism may be an allometric response to selection for larger body size. We show that such selection can indeed generate sexual dimorphism, but that this effect is too weak to account for the observed relationship between dimorphism and body size in primates. 相似文献