首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fertilization triggers cell remodeling from each gamete to a totipotent zygote. Using Caenorhabditis elegans as a model system, it has been revealed that lysosomal degradation pathways play important roles in cellular remodeling during this developmental transition. Endocytosis and autophagy, two pathways leading to the lysosomes, are highly upregulated during this period. A subset of maternal membrane proteins is selectively endocytosed and degraded in the lysosomes before the first mitotic cell division. Autophagy is also induced shortly after fertilization and executes the degradation of paternally inherited embryonic organelles, e.g. mitochondria and membranous organelles. This mechanism underlies the maternal inheritance of the mitochondrial genome. Autophagy is also required for the removal of extra P‐granule (germ granules in C. elegans) components in somatic cells of early embryos and thereby for the specific distribution of P‐granules to germ cells. This review focuses on recent advances in the study of the physiological roles and mechanisms of lysosomal pathways during early development in C. elegans.   相似文献   

2.
3.
Caenorhabditis elegans is an excellent model for high‐throughput experimental approaches but lacks an automated means to pinpoint time of death during survival assays over a short time frame, that is, easy to implement, highly scalable, robust, and versatile. Here, we describe an automated, label‐free, high‐throughput method using death‐associated fluorescence to monitor nematode population survival (dubbed LFASS for label‐free automated survival scoring), which we apply to severe stress and infection resistance assays. We demonstrate its use to define correlations between age, longevity, and severe stress resistance, and its applicability to parasitic nematodes. The use of LFASS to assess the effects of aging on susceptibility to severe stress revealed an unexpected increase in stress resistance with advancing age, which was largely autophagy‐dependent. Correlation analysis further revealed that while severe thermal stress resistance positively correlates with lifespan, severe oxidative stress resistance does not. This supports the view that temperature‐sensitive protein‐handling processes more than redox homeostasis underpin aging in C. elegans. That the ages of peak resistance to infection, severe oxidative stress, heat shock, and milder stressors differ markedly suggests that stress resistance and health span do not show a simple correspondence in C. elegans.  相似文献   

4.
5.
6.
7.
Epidemiological studies corroborate a correlation between pesticide use and Parkinson's disease (PD). Thiocarbamate and dithiocarbamate pesticides are widely used and produce neurotoxicity in the peripheral nervous system. Recent evidence from rodent studies suggests that these compounds also cause dopaminergic (DAergic) dysfunction and altered protein processing, two hallmarks of PD. However, DAergic neurotoxicity has yet to be documented. We assessed DAergic dysfunction in Caenorhabditis elegans (C. elegans) to investigate the ability of thiocarbamate pesticides to induce DAergic neurodegeneration. Acute treatment with either S‐ethyl N,N‐dipropylthiocarbamate (EPTC), molinate, or a common reactive intermediate of dithiocarbamate and thiocarbamate metabolism, S‐methyl‐N,N‐diethylthiocarbamate (MeDETC), to gradual loss of DAergic cell morphology and structure over the course of 6 days in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. HPLC analysis revealed decreased DA content in the worms immediately following exposure to MeDETC, EPTC, and molinate. In addition, worms treated with the three test compounds showed a drastic loss of DAergic‐dependent behavior over a time course similar to changes in DAergic cell morphology. Alterations in the DAergic system were specific, as loss of cell structure and neurotransmitter content was not observed in cholinergic, glutamatergic, or GABAergic systems. Overall, our data suggest that thiocarbamate pesticides promote neurodegeneration and DAergic cell dysfunction in C. elegans, and may be an environmental risk factor for PD.  相似文献   

8.
Organisms can end up in unfavourable conditions and to survive this they have evolved various strategies. Some organisms, including nematodes, survive unfavourable conditions by undergoing developmental arrest. The model nematode Caenorhabditis elegans has a developmental choice between two larval forms, and it chooses to develop into the arrested dauer larva form in unfavourable conditions (specifically, a lack of food and high population density, indicated by the concentration of a pheromone). Wild C. elegans isolates vary extensively in their dauer larva arrest phenotypes, and this prompts the question of what selective pressures maintain such phenotypic diversity? To investigate this we grew C. elegans in four different environments, consisting of different combinations of cues that can induce dauer larva development: two combinations of food concentration (high and low) in the presence or absence of a dauer larva-inducing pheromone. Five generations of artificial selection of dauer larvae resulted in an overall increase in dauer larva formation in most selection regimes. The presence of pheromone in the environment selected for twice the number of dauer larvae, compared with environments not containing pheromone. Further, only a high food concentration environment containing pheromone increased the plasticity of dauer larva formation. These evolutionary responses also affected the timing of the worms’ reproduction. Overall, these results give an insight into the environments that can select for different plasticities of C. elegans dauer larva arrest phenotypes, suggesting that different combinations of environmental cues can select for the diversity of phenotypically plastic responses seen in C. elegans.  相似文献   

9.
The pathology of spinocerebellar ataxia type 3, also known as Machado‐Joseph disease, is triggered by aggregation of toxic ataxin‐3 (ATXN3) variants containing expanded polyglutamine repeats. The physiological role of this deubiquitylase, however, remains largely unclear. Our recent work showed that ATX‐3, the nematode orthologue of ATXN3, together with the ubiquitin‐directed segregase CDC‐48, regulates longevity in Caenorhabditis elegans. Here, we demonstrate that the long‐lived cdc‐48.1; atx‐3 double mutant displays reduced viability under prolonged starvation conditions that can be attributed to the loss of catalytically active ATX‐3. Reducing the levels of the autophagy protein BEC‐1 sensitized worms to the effect of ATX‐3 deficiency, suggesting a role of ATX‐3 in autophagy. In support of this conclusion, the depletion of ATXN3 in human cells caused a reduction in autophagosomal degradation of proteins. Surprisingly, reduced degradation in ATXN3‐depleted cells coincided with an increase in the number of autophagosomes while levels of lipidated LC3 remained unaffected. We identified two conserved LIR domains in the catalytic Josephin domain of ATXN3 that directly interacted with the autophagy adaptors LC3C and GABARAP in vitro. While ATXN3 localized to early autophagosomes, it was not subject to lysosomal degradation, suggesting a transient regulatory interaction early in the autophagic pathway. We propose that the deubiquitylase ATX‐3/ATXN3 stimulates autophagic degradation by preventing superfluous initiation of autophagosomes, thereby promoting an efficient autophagic flux important to survive starvation.  相似文献   

10.
自噬是亚细胞膜结构发生动态变化并经溶酶体介导的细胞内蛋白质和细胞器降解的过程。通过平衡细胞内的合成和分解代谢,自噬可以维持细胞内环境稳态。干细胞是具有自我更新能力和多向分化潜能的细胞,对组织器官再生和维持组织稳态有重要作用。近年的研究表明,自噬在维持干细胞功能方面有非常重要的作用,本文综述了自噬的形成过程和分子机制及其在发育及干细胞中的作用。  相似文献   

11.
12.
13.
Argonaute proteins and their associated small RNAs (sRNAs) are evolutionarily conserved regulators of gene expression. Gametocyte‐specific factor 1 (Gtsf1) proteins, characterized by two tandem CHHC zinc fingers and an unstructured C‐terminal tail, are conserved in animals and have been shown to interact with Piwi clade Argonautes, thereby assisting their activity. We identified the Caenorhabditis elegans Gtsf1 homolog, named it gtsf‐1 and characterized it in the context of the sRNA pathways of C. elegans. We report that GTSF‐1 is not required for Piwi‐mediated gene silencing. Instead, gtsf‐1 mutants show a striking depletion of 26G‐RNAs, a class of endogenous sRNAs, fully phenocopying rrf‐3 mutants. We show, both in vivo and in vitro, that GTSF‐1 interacts with RRF‐3 via its CHHC zinc fingers. Furthermore, we demonstrate that GTSF‐1 is required for the assembly of a larger RRF‐3 and DCR‐1‐containing complex (ERIC), thereby allowing for 26G‐RNA generation. We propose that GTSF‐1 homologs may act to drive the assembly of larger complexes that act in sRNA production and/or in imposing sRNA‐mediated silencing activities.  相似文献   

14.
As in other poikilotherms, longevity in C. elegans varies inversely with temperature; worms are longer‐lived at lower temperatures. While this observation may seem intuitive based on thermodynamics, the molecular and genetic basis for this phenomenon is not well understood. Several recent reports have argued that lifespan changes across temperatures are genetically controlled by temperature‐specific gene regulation. Here, we provide data that both corroborate those studies and suggest that temperature‐specific longevity is more the rule than the exception. By measuring the lifespans of worms with single modifications reported to be important for longevity at 15, 20, or 25 °C, we find that the effect of each modification on lifespan is highly dependent on temperature. Our results suggest that genetics play a major role in temperature‐associated longevity and are consistent with the hypothesis that while aging in C. elegans is slowed by decreasing temperature, the major cause(s) of death may also be modified, leading to different genes and pathways becoming more or less important at different temperatures. These differential mechanisms of age‐related death are not unlike what is observed in humans, where environmental conditions lead to development of different diseases of aging.  相似文献   

15.
Caloric restriction (CR) extends lifespan in various heterotrophic organisms ranging from yeasts to mammals, but whether a similar phenomenon occurs in plants remains unknown. Plants are autotrophs and use their photosynthetic machinery to convert light energy into the chemical energy of glucose and other organic compounds. As the rate of photosynthesis is proportional to the level of photosynthetically active radiation, the CR in plants can be modeled by lowering light intensity. Here, we report that low light intensity extends the lifespan in Arabidopsis through the mechanisms triggering autophagy, the major catabolic process that recycles damaged and potentially harmful cellular material. Knockout of autophagy‐related genes results in the short lifespan and suppression of the lifespan‐extending effect of the CR. Our data demonstrate that the autophagy‐dependent mechanism of CR‐induced lifespan extension is conserved between autotrophs and heterotrophs.  相似文献   

16.
The insulin‐IGF‐1/DAF‐2 pathway has a central role in the determination of aging and longevity in Caenorhabditis elegans and other organisms. In this paper, we measured neuronal insulin secretion (using INS‐22::Venus) during C. elegans lifespan and monitored how this secretion is modified by redox homeostasis. We showed that INS‐22::Venus secretion fluctuates during the organism lifetime reaching maximum levels in the active reproductive stage. We also demonstrate that long‐lived daf‐2 insulin receptor mutants show remarkable low levels of INS‐22::Venus secretion. In contrast, we found that short‐lived mutant worms that lack the oxidation repair enzyme MSRA‐1 show increased levels of INS‐22::Venus secretion, specifically during the reproductive stage. MSRA‐1 is a target of the insulin‐IGF‐1/DAF‐2 pathway, and the expression of this antioxidant enzyme exclusively in the nervous system rescues the mutant insulin release phenotype and longevity. The msra‐1 mutant phenotype can also be reverted by antioxidant treatment during the active reproductive stage. We showed for the first time that there is a pattern of neuronal insulin release with a noticeable increment during the peak of reproduction. Our results suggest that redox homeostasis can modulate longevity through the regulation of insulin secretion, and that the insulin‐IGF‐1/DAF‐2 pathway could be regulated, at least in part, by a feedback loop. These findings highlight the importance of timing for therapeutic interventions aimed at improving health span.  相似文献   

17.
18.
19.
Reactive oxygen species (ROS) are potentially toxic, but they are also signaling molecules that modulate aging. Recent observations that ROS can promote longevity have to be reconciled with the numerous claims about the benefits of antioxidants on lifespan. Here, three antioxidants [N‐acetylcysteine (NAC), vitamin C, and resveratrol (RSV)] were tested on Caenorhabditis elegans mutants that alter drug uptake, mitochondrial function, and ROS metabolism. We observed that like pro‐oxidants, antioxidants can both lengthen and shorten lifespan, dependent on concentration, genotypes, and conditions. The effects of antioxidants thus reveal an inverted U‐shaped dose–response relationship between ROS levels and lifespan. In addition, we observed that RSV can act additively to both NAC and paraquat, to dramatically increase lifespan. This suggests that the effect of compounds that modulate ROS levels can be additive when their loci of action or mechanisms of action are sufficiently distinct.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号