首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
ABSTRACT Plumage bacteria may play an important role in shaping the life histories of birds. However, to design suitable experiments to examine causal relationships between plumage bacteria and the fitness of host birds, natural variation in plumage bacterial communities needs to be better understood. We examined within‐individual consistency of plumage bacterial contamination in Great Tits (Parus major), comparing different body regions (ventral vs. dorsal) and comparing contamination between years. Numbers of free‐living and attached bacteria and the species richness of feather‐degrading bacterial assemblages were studied using flow cytometry and ribosomal intergenic spacer analysis (RISA). Numbers of both types of bacteria were higher on dorsal than on ventral feathers. Numbers of free‐living, but not attached, bacteria on the two body regions were highly positively correlated. There was also a strong within‐individual correlation between numbers of attached bacteria during the same breeding stages in different years. These results suggest that, despite variation in absolute levels of feather bacterial loads between years and different body regions, sampling individual birds can provide reliable estimates of relative levels of bacterial contamination, as long as sampling time and body region are carefully standardized.  相似文献   

2.
Feather‐associated bacteria are widespread inhabitants of avian plumage. However, the determinants of the between‐individual variation in plumage bacterial loads are less well understood. Infection intensities can be determined by ecological factors, such as breeding habitat, and can be actively regulated by hosts via preening. Preening, yet, is a resource intensive activity, and thus might be traded‐off against reproductive investment in breeding birds. Here, we studied barn swallows Hirundo rustica to assess the bacterial cost of reproduction in relation to nesting site micro‐habitats. Barn swallows prefer to breed in the company of large‐sized farm animals, although the presence of mammalian livestock in barns assures a warm and humid micro‐climate that favours bacterial proliferation. Thus, we experimentally manipulated brood sizes of birds breeding in barns with, or without, farm animals and measured total cultivable bacteria (TCB) and feather‐degrading bacteria (FDB) from the plumage. We found that the abundance of feather‐associated bacteria (i.e. both TCB and FDB) in females, but not males, breeding in barns with livestock were significantly higher than in conspecifics breeding in empty barns. Plumage bacterial loads, however, were not affected by brood size manipulations in either sex. In addition, we report a negative relationship between both TCB and FDB and hatching date in females, and several sex and seasonal differences in plumage bacterial abundances. Our study is the first to show that breeding micro‐habitat (i.e. livestock co‐tenancy) has consequences for the abundance of feather‐associated bacteria.  相似文献   

3.
Potentially, pathogenic bacteria are one of the main infective agents against which a battery of chemical and physical barriers has evolved in animals. Among these are the secretions by the exocrine uropygial gland in birds. The antimicrobial properties of uropygial secretions may prevent colonization and growth of microorganisms on feathers, skin and eggshells. However, uropygial gland secretions also favour the proliferation of feather mites that feed on secretions and microorganisms living on feathers that would otherwise reach eggshells during incubation if not consumed by feather mites. Therefore, at the interspecific level, uropygial gland size (as an index of volume of uropygial secretion) should be positively related to eggshell bacterial load (i.e. the risk of egg infection), whereas eggshell bacterial loads may be negatively related to abundance of feather mites eating bacteria. Here, we explore these previously untested predictions in a comparative framework using information on eggshell bacterial loads, uropygial gland size, diversity and abundance of feather mites and hatching success of 22 species of birds. The size of the uropygial gland was positively related to eggshell bacterial loads (mesophilic bacteria and Enterobacteriaceae), and bird species with higher diversity and abundance of feather mites harboured lower bacterial density on their eggshells (Enterococcus and Staphylococcus), in accordance with the hypothesis. Importantly, eggshell bacterial loads of mesophilic bacteria, Enterococcus and Enterobacteriaceae were negatively associated with hatching success, allowing us to interpret these interspecific relationships in a functional scenario, where both uropygial glands and mutualistic feather mites independently reduce the negative effects of pathogenic bacteria on avian fitness.  相似文献   

4.
Bacteria are fundamental associates of animals, and recent studies have highlighted their major role in host behaviour, immunity or reproductive investment. Thus, any environmental factor modifying bacterial community may affect host fitness. In birds, trace metals emitted by anthropogenic activities accumulate onto the plumage where they may alter bacterial community and ultimately affect bird fitness. Although trace metals are current major environmental issues in urban habitats, their effects on feather bacterial community have never been investigated. Here, we supplemented feral pigeons Columba livia, an emblematic urban species, with zinc and/or lead in drinking and bath water. As expected, lead and zinc supplementations modified plumage bacterial community composition. Zinc decreased bacterial load, while lead decreased bacterial richness and the frequency of preening behaviour in birds, known to regulate feather bacteria. Our results demonstrate for the first time the effects of common urban trace metals on plumage bacterial community and shed light on one of the mechanisms by which trace metals can affect bird fitness. Further studies are now needed to investigate how this effect modulates avian life history traits known to depend on plumage bacterial community.  相似文献   

5.
The Shiny Cowbird Molothrus bonariensis is a sexually dichromatic species, in which males have blackish‐blue iridescence and females are dull brown. However, in some subtropical parts of its distribution, females show a plumage polymorphism that ranges from dull brown to dark brown and even black. Plumage melanization has been shown to protect feathers from bacterial degradation, decreasing the effects of harmful bacterial activity and thus plumage damage. In this study, we assessed whether bacterial feather‐degrading activity is acting as the selective force to increase darkness in the plumage of the female Shiny Cowbirds in Argentina. We compared the degradation of female Shiny Cowbird feathers belonging to different colour morphs when exposed to bacterial strains isolated from subtropical and temperate zones of its distribution, as well as to Bacillus licheniformis. We did not find differences in susceptibility to bacterial degradation between brown feathers and darker feathers. These results suggest that female plumage polymorphism in Shiny Cowbirds has not arisen as a defence against bacterial feather‐degrading activity.  相似文献   

6.
There is increasing evidence of adaptive preferential investment during moult in those feather tracts that are more advantageous for fitness. In this study, we assessed whether, after the manual removal of two functionally different flight feathers (one primary and one rectrix), birds from two common passerine species (Eurasian Blackcap Sylvia atricapilla and European Robin Erithacus rubecula) favoured the regeneration of primary (supposedly the most functionally important feathers) over rectrix feathers. Our results did not show differences between replaced primary and rectrix feathers in their final length, but demonstrated that the gap left by the loss of the primary feather was filled earlier, suggesting that a rapid repair of the most essential feather tracts is also evolutionarily advantageous during the adventitious replacement of plumage.  相似文献   

7.

Background

Moult is one of the most costly activities in the annual cycle of birds and most avian species separate moult from other energy-demanding activities, such as migration. To this end, young birds tend to undergo the first post-juvenile moult before the onset of migration, but in some species the time window for the pre-migratory feather replacement is too narrow. We hypothesized that in such species an increased investment in the structural quality of juvenile feathers may allow to retain juvenile plumage throughout the entire migratory period and delay moult until arriving at wintering grounds, thus avoiding a moult-migration overlap.

Methods

The effect of juvenile plumage quality on the occurrence of moult-migration overlap was studied in a migratory shorebird, the common snipe Gallinago gallinago. Ca. 400 of first-year common snipe were captured during their final stage of autumn migration through Central Europe. The quality of juvenile feathers was assessed as the mass-length residuals of retained juvenile rectrices. Condition of migrating birds was assessed with the mass of accumulated fat reserves and whole-blood hemoglobin concentration. Path analysis was used to disentangle complex interrelationships between plumage quality, moult and body condition.

Results

Snipe which grew higher-quality feathers in the pre-fledging period were less likely to initiate moult during migration. Individuals moulting during migration had lower fat loads and hemoglobin concentrations compared to non-moulting birds, suggesting a trade-off in resource allocation, where energetic costs of moult reduced both energy reserves available for migration and resources available for maintenance of high oxygen capacity of blood.

Conclusions

The results of this study indicate that a major life-history trade-off in a migratory bird may be mediated by the quality of juvenile plumage. This is consistent with a silver spoon effect, where early-life investment in feather quality affects future performance of birds during migration period. Our results strongly suggest that the juvenile plumage, although retained for a relatively short period of time, may have profound consequences for individuals’ fitness.
  相似文献   

8.
Although feathers are the unifying characteristic of all birds, our understanding of the causes, mechanisms, patterns and consequences of the feather moult process lags behind that of other major avian life‐history phenomena such as reproduction and long‐distance migration. Migration, which evolved in many species of the temperate and arctic zones, requires high energy expenditure to endure long‐distance journeys. About a third of Western‐Palearctic passerines perform long‐distance migrations of thousands of kilometres each year using various morphological, physiological, biomechanical, behavioural and life‐history adaptations. The need to include the largely non‐overlapping breeding, long‐distance migration and feather moult processes within the annual cycle imposes a substantial constraint on the time over which the moult process can take place. Here, we review four feather‐moult‐related adaptations which, likely due to time constraints, evolved among long‐distance Western‐Palearctic migrants: (i) increased moult speed; (ii) increased overlap between moult and breeding or migration; (iii) decreased extent of plumage moult; and (iv) moult of part or all of the plumage during the over‐wintering period in the tropics rather than in the breeding areas. We suggest that long‐distance migration shaped the evolution of moult strategies and increased the diversity of these strategies among migratory passerines. In contrast to this variation, all resident passerines in the Western Palearctic moult immediately after breeding by renewing the entire plumage of adults and in some species also juveniles, while in other species juvenile moult is partial. We identify important gaps in our current understanding of the moult process that should be addressed in the future. Notably, previous studies suggested that the ancestral moult strategy is a post‐breeding summer moult in the Western Palearctic breeding areas and that moult during the winter evolved due to the scheduling of long‐distance migration immediately after breeding. We offer an alternative hypothesis based on the notion of southern ancestry, proposing that the ancestral moult strategy was a complete moult during the ‘northern winter’ in the Afro‐tropical region in these species, for both adults and juveniles. An important aspect of the observed variation in moult strategies relates to their control mechanisms and we suggest that there is insufficient knowledge regarding the physiological mechanisms that are involved, and whether they are genetically fixed or shaped by environmental factors. Finally, research effort is needed on how global climate changes may influence avian annual routines by altering the scheduling of major processes such as long‐distance migration and feather moult.  相似文献   

9.
Because many species of large birds must remain capable of flight during moult and breeding, complete replacement of all flight feathers often takes two or more years, with the result that their plumage normally includes many faded, worn and sometimes even broken feathers. It seems adaptive for such birds to have the ability to quickly replace severely damaged feathers. In search of such a feather replacement mechanism, we cut rectrices on a captive Golden Eagle Aquila chrysaetos and found that feathers cut in their first year of use were replaced, on average, after 11.4 months, whereas uncut feathers before and during the experiment were moulted, on average, after 24 months of use. Feather cutting advanced moult, on average, in excess of a year and thereby demonstrates the existence of a previously undescribed neurophysiological mechanism for preferentially replacing damaged feathers.  相似文献   

10.
Moult is a costly but necessary process in avian life, which displays two main temporal patterns within the annual cycle of birds (summer and winter moult). Timing of moult can affect its duration and consequently the amount of material invested in feathers, which could have a considerable influence on feather structure and functionality. In this study, we used two complementary approaches to test whether moult duration and feather mass vary in relation to the timing of moult. Firstly, we conducted a comparative study between a sample of long‐distance migratory passerine species which differ in moult pattern. Secondly, we took advantage of the willow warbler's Phylloscopus trochilus biannual moult, for which it is well‐known that winter moult takes longer than summer moult, to assess between‐moult variation in feather mass. Our comparative analysis showed that summer moulting species performed significantly shorter moults than winter moulters. We also detected that feathers produced in winter were comparatively heavier than those produced in summer, both in between‐species comparison and between moults of the willow warbler. These results suggest the existence of a trade‐off between moult speed and feather mass mediated by timing of moult, which could contribute to explain the diversity of moult patterns in passerines.  相似文献   

11.
Alistair Dawson 《Ibis》2004,146(3):493-500
In many species of birds there is a close relationship between the end of breeding and the start of moult. Late-breeding birds therefore often start to moult late, but then moult more rapidly. This is an adaptive mechanism mediated by decreasing day lengths that allows late-breeding birds to complete moult in time. This study asked how these birds complete moult of the primary feathers more rapidly, and the consequences of this on the mass of primary feathers. Common Starlings Sturnus vulgaris were induced to moult rapidly in one of two ways. In the first experiment, one group was exposed to artificially decreasing photoperiods from the start of moult, whereas the control group remained on a constant long photoperiod. The second experiment was a more realistic simulation. Two groups were allowed to moult in an outdoor aviary. One group started to moult at the normal time. In the other, the start of moult was delayed by 3 weeks with an implant of testosterone. The duration of moult was significantly reduced in both the group experiencing artificially decreasing photoperiods and the group in which the start of moult was delayed. The faster moult rate was achieved by moulting more feathers concurrently. The rate of increase in length of each of the primary feathers, and their final length, did not differ between groups. The rate at which total new primary feather mass was accumulated was greater in more rapidly moulting birds, but this was insufficient to compensate for the greater numbers of feathers being grown concurrently. Consequently, the rate of increase in mass of individual feathers, and the final feather mass, were less in the rapidly moulting birds. A 3-week delay in the start of moult is not an unrealistic scenario. That this caused a measurable decrease in feather mass suggests that late-breeding birds are indeed likely to suffer a real decrease in the quality of plumage grown during the subsequent moult.  相似文献   

12.
ABSTRACT Avian age‐class discrimination is typically based on the completeness of the first prebasic molt. In several calidrid sandpiper species, juvenal flight feathers grown on Arctic breeding grounds are retained through the first three migrations. Thereafter, flight feathers are grown annually at temperate migratory stopover sites during the fall or on the subtropical wintering grounds. Standard methods for distinguishing age classes of sandpipers rely on a combination of traits, including body plumage, coloration of protected inner median covert edges, and extent of flight feather wear. We tested the ability of stable hydrogen isotope ratios in flight feathers (δDf) to distinguish young birds in their first winter through second fall from older adults in three calidrid sandpiper species, Western (Calidris mauri), Least (C. minutilla), and Semipalmated (C. pusilla) sandpipers. We compared the apparent reliability of the isotope approach to that of plumage‐based aging. The large expected differences in δDf values of flight feathers grown at Arctic versus non‐Arctic latitudes enabled use of this technique to discriminate between age‐classes. We determined δDf values of known Arctic‐grown feathers from juveniles that grew their flight feathers on the breeding grounds. Flight feather δDf values of southward‐migrating adults showed bimodal distributions for all three species. Negative values overlapped with species‐specific juvenile values, identifying putative second fall birds with high‐latitude grown juvenal feathers retained from the previous year. The more positive values identified older adults who grew their feathers at mid‐ and low latitudes. Importantly, δDf analysis successfully identified first‐winter and second‐fall birds not detected by plumage‐based aging. Flight feather wear alone was a poor basis for age classification because scores overlapped extensively between putative second fall birds and older adults. Flight feather hydrogen isotope analysis enables more definitive assignment of age classes when standard plumage methods are unreliable.  相似文献   

13.
Here we investigate the change in feather quality during partial post‐juvenile and complete post‐breeding moult in great tit Parus major by measuring the change in the number of fault bars and feather holes on wing and tail feathers. Feathers grown during ontogeny usually are of lower quality than feathers grown following subsequent moults at independence. This is reflected by higher number of fault bars and feather holes on juveniles compared to adults. Fault bars are significantly more common on tail and proximal wing feathers than on the distal remiges, indicating a mechanism of adaptive allocation of stress induced abnormalities during ontogeny into the aerodynamically less important flight feathers. On the contrary, feather holes produced probably by chewing lice have a more uniform distribution on wing and tail feathers, which may reflect the inability of birds to control their distribution, or the weak natural selection imposed by them. The adaptive value of the differential allocation of fault bar between groups of feathers seems to be supported by the significantly higher recapture probability of those juvenile great tits which have fewer fault bars at fledging on the aerodynamically most important primaries, but not on other groups of flight feathers. The selection imposed by feather holes seems to be smaller, since except for the positive association between hatching date, brood size and the number of feather holes at fledging, great tits' survival was not affected by the number of feather holes. During post‐juvenile moult, the intensity of fault bars drops significantly through the replacement of tail feathers and tertials, resulting in disproportional reduction of the total number of fault bars on flight feathers related to the number of feathers replaced. The reduction in the number of fault bars during post‐juvenile moult associated with their adaptive allocation to proximal wing feathers and rectrices may explain the evolution of partial post‐juvenile moult in the great tit, since the quality of flight feathers can be increased significantly at a relatively small cost. Our results may explain the widespread phenomenon of partial post‐juvenile moult of flight feathers among Palearctic passerines. During the next complete post‐breeding moult, the total number of fault bars on flight feathers has remained unchanged, indicating the effectiveness of partial post‐juvenile moult in reducing the number of adaptively allocated fault bars. The number of feather holes has also decreased on groups of feathers replaced during partial post‐juvenile moult, but the reduction is proportional with the number of feathers moulted. In line with this observation, the number of feather holes is further reduced during post‐breeding moult on primaries and secondaries, resulting in an increase in feather quality of adult great tits.  相似文献   

14.
There is growing evidence that moult speed affects plumage quality. In many bird species, males and females differ in terms of breeding effort, survival expectation and the relationship between fitness and plumage quality. Consequently, differences in moult strategies between the sexes can be expected. The aim of this study was to assess whether, under simulated time constraints and with no parental investment in the previous breeding season, males and females differed in: a) timing and duration of primary moult, b) growth rates of individual primary feathers, and c) number of concurrently growing feathers. We investigated the effect of time constraints generated by a treatment consisting of two decreasing photoperiods (slow changing photoperiod, SCP=2 min day?1 and fast changing photoperiod, FCP=8 min day?1) on the primary post‐nuptial moult of captive rock sparrows Petronia petronia. Females started to moult on average 14 and 15 days later than males in both experimental groups. Primary moult duration was 10 (FCP) and 24 (SCP) days longer in males than in females, and, within sex, 34 (females) and 48 (males) days longer in SCP birds than in FCP ones. Females renewed a larger number of primaries simultaneously (5.7% in FCP and 12.8% in SCP) and had a higher total daily feather mass grown (9.9% in FCP and 22.4% in SCP), even though daily growth rates of individual primaries did not differ between sexes. As a result, males and females completed their primary moult at the same time within treatment. The observed differences in timing, duration and energy allocation for primary moult between the sexes probably have a genetic basis, as birds did not engage in reproduction during the preceding breeding season.  相似文献   

15.
Migratory birds have less time for moulting than sedentary birds, which may force them to produce their feathers faster at the expense of reducing feather quality. However, the effects of migration on the trade-off between moult speed and plumage quality remain to be studied in natural populations. We analysed the relationship between growth rate and quality of individual feathers, taking advantage of natural variation between migratory and sedentary populations of blackcaps Sylvia atricapilla . As predicted by life-history theory, individual blackcaps showed variable individual quality, which was revealed by positive correlations between feather growth rate and feather mass within populations. However, migrants grew up their feathers faster, producing lighter feathers than sedentary blackcaps. These results support the idea that feather growth rate and feather quality are traded against each other in blackcaps. Such a trade-off is apparently caused by different selection associated to migratory and sedentary life styles, which opens new insights into the diversification of moult patterns in birds.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 98–105.  相似文献   

16.
Gregorio Moreno‐Rueda 《Ibis》2014,156(2):457-460
Feather holes represent damage to the plumage of birds and are correlated with delayed moult. Uropygial gland size is negatively correlated with feather holes. Consequently, it was predicted that birds with smaller uropygial glands would have more feather holes, and that this would affect moult performance. I examined this prediction in the House Sparrow Passer domesticus. Individuals with smaller uropygial glands had more feather holes, and those with more feather holes moulted later and faster. Therefore, uropygial gland size seemed to affect moult performance via its effect on feather holes. Uropygial gland size may have a positive effect on plumage quality, through a negative effect on feather holes, and therefore on moult timing and speed.  相似文献   

17.
Plumage coloration in birds plays a critical role in communication and can be under selection throughout the annual cycle as a sexual and social signal. However, for migratory birds, little is known about the acquisition and maintenance of colorful plumage during the nonbreeding period. Winter habitat could influence the quality of colorful plumage, ultimately carrying over to influence sexual selection and social interactions during the breeding period. In addition to the annual growth of colorful feathers, feather loss from agonistic interactions or predator avoidance could require birds to replace colorful feathers in winter or experience plumage degradation. We hypothesized that conditions on the wintering grounds of migratory birds influence the quality of colorful plumage. We predicted that the quality of American redstart (Setophaga ruticilla) tail feathers regrown after experimental removal in Jamaica, West Indies, would be positively associated with habitat quality, body condition, and testosterone. Both yearling (SY) and adult (ASY) males regrew feathers with lower red chroma, suggesting reduced carotenoid content. While we did not observe a change in hue in ASY males, SY males shifted from yellow to orange plumage resembling experimentally regrown ASY feathers. We did not observe any effects of habitat, testosterone, or mass change. Our results demonstrate that redstarts are limited in their ability to adequately replace colorful plumage, regardless of habitat, in winter. Thus, feather loss on the nonbreeding grounds can affect social signals, potentially negatively carrying over to the breeding period.  相似文献   

18.
There is increasing evidence that melanin‐based plumage coloration correlates with different components of fitness and that it may act as a social or sexual signal of individual quality. We analysed variation in melanin pigmentation in the outermost tail feathers of the Common Snipe Gallinago gallinago. During courtship flights, male Snipe use their outermost tail feathers to generate a drumming sound, which plays a role in territory establishment and mate choice. As the outermost tail feathers are displayed to females during these flights, we predicted that conspicuous variation in their rusty‐brown (pheomelanin‐based) coloration may act as an honest signal of individual quality. To test this prediction, we spectrophotometrically measured brightness (an indicator of total melanin content) and red chroma (an indicator of pheomelanin content) of the outermost tail feathers in 180 juvenile and adult Common Snipe. An age‐related decline in feather brightness was found exclusively in females, suggesting that melanization could have evolved by natural selection to camouflage incubating birds. In both sexes, brightness of the tail feathers was inversely correlated with their structural quality (as measured with mass–length residuals), suggesting that melanization could increase mechanical properties of feathers and, in males, enhance the quality of courtship sonation. Red chroma positively correlated with total plasma protein concentration, supporting our prediction that pheomelanin pigmentation of tail feathers may act as an honest signal of condition. Our study indicated that variation in the melanin‐based coloration of the outermost tail feathers in the Common Snipe could have evolved as a result of several different selection pressures and it emphasizes the complexity of the processes that underlie the evolution of melanin‐based plumage coloration in birds.  相似文献   

19.
Phenotypic flexibility during moult has never been explored in austral nomadic ducks. We investigated whether the body condition, organ (pectoral muscle, gizzard, liver and heart) mass and flight‐feather growth Egyptian geese Alopochen aegyptiaca in southern Africa show phenotypic flexibility over their 53‐day period of flightless moult. Changes in body mass and condition were examined in Egyptian geese caught at Barberspan and Strandfontein in South Africa. Mean daily change in primary feather length was calculated for moulting geese and birds were dissected for pectoral muscle and internal organ assessment. Mean body mass and condition varied significantly during moult. Body mass and condition started to decrease soon after flight feathers were dropped and continued to do so until the new feathers were at least two‐thirds grown, after which birds started to regain body mass and condition. Non‐moulting geese had large pectoral muscles, accounting for at least 26% of total body mass. Once moult started, pectoral muscle mass decreased and continued to do so until the flight feathers were at least one‐third grown, after which pectoral muscle mass started to increase. The regeneration of pectoral muscles during moult started before birds started to gain overall body mass. Gizzard mass started to increase soon after the onset of moult, reaching a maximum when the flight feathers were two‐thirds grown, after which gizzard mass again decreased. Liver mass increased significantly as moult progressed, but heart mass remained constant throughout moult. Flight feather growth was initially rapid, but slowed towards the completion of moult. Our results show that Egyptian geese exhibit a significant level of phenotypic flexibility when they moult. We interpret the phenotypic changes that we observed as an adaptive strategy to minimize the duration of the flightless period. Moulting Egyptian geese in South Africa undergo more substantial phenotypic changes than those reported for ducks in the northern hemisphere.  相似文献   

20.
Trace metals are chemical pollutants of prime concern nowadays given their implication in several human diseases and their noxious effects on wildlife. Previous studies demonstrated their negative (e.g. lead, cadmium) or positive (e.g. zinc) effects on body condition, immunity and reproductive success in birds. Because of their effects on bird condition, trace metals are likely to influence the production of condition‐dependent plumage colours, that may be used in mate choice. In the feral pigeon Columba livia, we investigated iridescent colouration in response to lead and zinc experimental (i.e. metal supplementation in standardized conditions) and natural exposure (i.e. metal concentrations in feathers of wild urban pigeons), and melanic feather colouration in response to experimental lead and zinc exposure. Both studies (i.e. experimental and correlative) consistently showed that lead exposure decreased iridescent neck feather brightness independently of colour morph. Moreover, lead, when provided alone, decreased melanic feather reflectance in the middle wavelengths while zinc supplementation increased melanic feather reflectance in the violet‐wavelength. In conclusion, our study suggests that the colouration of iridescent and melanic feathers depends on the exposure to pollutants. Whether trace metal exposure affected the ability of birds to produce melanin pigments, to grow the microstructural feather elements required for maximum colour display, or to cope with bacteria that degrade feather microstuctures remains unclear. Future studies should investigate whether these metal‐induced modifications of plumage colouration affect behaviours involved in sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号