首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of ginseng sapogenins, aglycone parts of ginsenosides, against oxidative damage by radical generator, 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH), in renal epithelial LLC-PK(1) cells was investigated to identify the structural characteristics of sapogenins to have renoprotective effects. Of the tested sapogenins, Δ(20(21))-protopanaxatriol showed the strongest protective effect against the AAPH-induced LLC-PK(1) cell damage. Based on the structure and stronger activity of Δ(20(21))-protopanaxatriol than the other sapogenins, the hydroxyl group in C-6 and double bond in C-20(21) position were important for renoprotective effect of sapogenin against oxidative stress.  相似文献   

2.
A class of N-substituted quinoline compounds has been introduced recently for the fluorescence measurement of Cl concentration in biological preparations. The most Cl-sensitive compound was 6-methoxy-N-[3-sulfopropyl] quinolinium with peak excitation and emission wavelengths of 350 and 442 nm and a Stern-Volmer constant for quenching by Cl of 118 M-1. Six water-soluble quinoline derivatives were synthesized and characterized for the purposes of increasing Cl sensitivity, adding ester functions for cell trapping, and red-shifting the fluorescence peak wavelengths. Acetic acid ester functions were added at the N-, 2-, and 6-positions of the quinoline ring. The best ester compound, N-(6-methoxyquinolyl)acetoethyl ester (MQAE), was water soluble (270 g/liter at 23 degrees C; octanol:H2O partition coefficient of 0.009), had a high Cl sensitivity (Stern-Volmer constant 200 M-1), peak excitation and emission wavelengths of 355 and 460 nm, a fluorescence lifetime of 21.6 ns, and a molar absorbance of 4850 M-1 cm-1 (320 nm). MQAE fluorescence was not altered by the physiological anions HCO3, SO4, and PO4, by cations, or by pH. MQAE was used to measure chloride transport in liposome membranes and in cultured LLC-PK1 cells in monolayer; MQAE leaked out of cells less than 20% in 60 min at 37 degrees C. The physical, optical, and anion quenching properties for the series of ester compounds were determined to establish a set of structure-activity correlates.  相似文献   

3.
Membrane glycoproteins and glycolipids play an important role in epithelial organization, transport and function. To study the effects of exogenous carbohydrates on the expression of glycoproteins, cells of the renal epithelial line LLC-PK1 were cultured on different nutritive carbohydrate sources and on uridine, which is, despite striking differences, known to substitute all essential nutritive functions of glucose. LLC-PK1 cultures were long-term adapted to growth in culture medium containing 0.5, 5, 10 and 25 mM glucose, and 5 mM fructose, galactose and uridine, respectively, as the sole carbohydrate source. These growth conditions elicited adaptive changes in the expression of enzyme activities of alkaline phosphatase and gamma-glutamyltranspeptidase, integral membrane glycoproteins exclusively localized in the apical membrane of LLC-PK1 cells. SDS-PAGE of membrane preparations of adapted LLC-PK1 cells revealed a strong induction of several protein bands between 13.5 and 47 kD in fructose-grown cells, while in plasma membranes of cells grown in galactose several protein bands between 62 and 70 kD decreased. Changes in the secretion pattern of proteins into the culture medium were most prominent in uridine-grown cells compared to controls grown on 25 mM glucose.  相似文献   

4.
Different rigidities of adhesive collagen substrate affect cellular functions with unclear mechanisms. Here, we cultured a renal epithelial cell line (LLC-PK1) and a tumor cell line (HeLa) on substrates of different rigidities and compared the cell type-specific responses. The culture dish was coated with a very thin layer of collagen gel (control group) or overlaid with collagen gel (soft substrate). LLC-PK1 cells contracted as they grew on collagen gel and the apoptotic bodies obviously appeared with time. The protein levels of procaspase-12 and its downstream target procaspase-3 were decreased when LLC-PK1 cells cultured on collagen gel. Mu-calpain was activated on collagen gel. Collage gel also induced the cleavage of alpha-spectrin which resulted in the disorganization of actin cytoskeleton. In contrast, there was no significant change in cytochrome c revelation, mitochondrial membrane potential, and the protein levels of procaspase-8 and procaspase-9. Moreover, soft substrate caused elevated cytosolic Ca(2+), Ca(2+) overload in ER and upregulation of capacitative calcium entry. Ca(2+) chelator or channel blocker partially rescued the collagen-gel induced apoptosis by inhibiting mu-calpain activation. In contrast, for HeLa cells cultured either on collagen gel or on gel-coated dish, there was no significant change in positive Annexin V staining, no activation of procaspase-12 and no cleavage of mu-calpain. Thus, soft substrate induces apoptosis in LLC-PK1 cells by the disturbance of Ca(2+) homeostasis.  相似文献   

5.
The LLC-PK1 mutant cell lines FIB4 and FIB6 are affected in the catalytic (C) subunit of cAMP-dependent protein kinase (cAMP-PK) such that they possess less than 10% parental activity. However, by Western blot analysis they were shown to possess normal levels of C subunit protein. Somatic cell hybrids were derived between mutant and LLC-PK1 cells, and examined for complementation of the cAMP-PK lesion. Codominant expression of mutant and normal alleles was observed, in that somatic cell hybrids between FIB4 and LLC-PK1, and between FIB6 and LLC-PK1 cells, exhibited cAMP-PK activity 60-75% that of LLC-PK1 cells, intermediate between mutant and normal parental cell lines. The cAMP-PK of the FIB6 x LLC-PK1 and FIB4 x LLC-PK1 hybrids was examined by ion exchange chromatography. In contrast to the FIB6 and FIB4 mutants which lack an active Type I cAMP-PK, the hybrids retained levels of active Type I cAMP-PK greater than 30% that of LLC-PK1, concomitant with the retention of catalytic activity. It was concluded that the loss of Type I kinase in the FIB6 and FIB4 mutants is most likely a consequence of the lesion in the cAMP-PK C subunit. All somatic cell hybrids examined showed levels of cAMP-PK C subunit (as determined by Western blot analysis), and in vivo regulation of cAMP-PK activation (in response to hormonal or nonreceptor-mediated stimulation of adenylate cyclase), completely comparable to those of the parental LLC-PK1 cells. Hence, no aberrant regulation of either cAMP-PK subunit levels or cAMP-PK activities was evident in the somatic cells hybrids. All data were consistent with the hypothesis that FIB4 and FIB6 contain a structural mutation affecting the cAMP-PK catalytic subunit that is expressed phenotypically in the presence of the normal allele.  相似文献   

6.
Transforming growth factor (TGF)-beta is a multifunctional growth factor with important roles in development, cell proliferation, and matrix deposition. It signals through the sequential activation of two serine/threonine kinase receptors, the type I and type II receptors. A third cell surface receptor, betaglycan, serves as a co-receptor for TGF-beta in some cell types, enhancing TGF-beta-mediated signaling. We have examined the function of betaglycan in renal epithelial LLC-PK1 cells that lack endogenous betaglycan. We demonstrate that the expression of betaglycan in LLC-PK1 cells results in inhibition of TGF-beta signaling as measured by reporter gene expression, thymidine incorporation, collagen production, and phosphorylation of the downstream signaling effectors Smad2 and Smad3. In comparison, the expression of betaglycan in L6 myoblasts enhances TGF-beta signaling, which is consistent with the published literature. The effects of betaglycan in LLC-PK1 cells are not mediated by ligand sequestration or increased production of a soluble form of the receptor, which has been reported to serve as a ligand antagonist. We demonstrate instead that in LLC-PK1 cells, unlike L6 cells, expression of betaglycan prevents association between the type I and type II TGF-beta receptors, which is required for signaling. This is a function of the glycosaminoglycan modifications of betaglycan. Betaglycan in LLC-PK1 cells exhibits higher molecular weight glycosaminoglycan (GAG) chains than in L6 cells, and a GAG- betaglycan mutant does not inhibit TGF-beta signaling or type I/type II receptor association in LLC-PK1 cells. Our data indicate that betaglycan can function as a potent inhibitor of TGF-beta signaling by a novel mechanism and provide support for an essential but complex role for proteoglycan co-receptors in growth factor signaling.  相似文献   

7.
8.
Vancomycin chloride (VCM), a glycopeptide antibiotic, is widely used for the therapy of infections caused by methicillin-resistant Staphylococcus aureus. However, nephrotoxicity is a major adverse effect in VCM therapy. In this study, we investigated the cellular mechanisms underlying VCM-induced renal tubular cell injury in cultured LLC-PK1 cells. VCM induced a concentration- and time-dependent cell injury in LLC-PK1 cells. VCM caused increases in the numbers of annexin V-positive/PI-negative cells and TUNEL-positive cells, indicating the involvement of apoptotic cell death in VCM-induced renal cell injury. The VCM-induced apoptosis was accompanied by the activation of caspase-9 and caspase-3/7 and reversed by inhibitors of these caspases. Moreover, VCM caused an increase in intracellular reactive oxygen species production and mitochondrial membrane depolarization, which were reversed by vitamin E. In addition, mitochondrial complex I activity was inhibited by VCM as well as by the complex I inhibitor rotenone, and rotenone mimicked the VCM-induced LLC-PK1 cell injury. These findings suggest that VCM causes apoptotic cell death in LLC-PK1 cells by enhancing mitochondrial superoxide production leading to mitochondrial membrane depolarization followed by the caspase activities. Moreover, mitochondrial complex I may play an important role in superoxide production and renal tubular cell apoptosis induced by VCM.  相似文献   

9.
The ability of cadmium-bound metallothionein(Cd-MT) to induce apoptosis was investigated in vivo and in vitro. Administration of purified Cd-MT (0.15 mg MT bound Cd per kg body weight) to the rat induces DNA fragmentation, a biochemical characteristic of apoptosis in the kidney at 16 h, which was detectable by ethidium bromide staining on an agarose gel. It was still detected 24 h after administration. Induction of apoptosis by Cd-MT was specific to kidney; it was not observed in cerebrum, cerebellum, heart, lung, liver, testis, dorsolateral prostate, and ventral prostate. In contrast, addition of Cd-MT (0.01-100 microM) to the cultured porcine kidney LLC-PK1 cells failed to induce apoptosis under the condition where cadmium chloride (10 microM) did. There was no additivity of induction of apoptosis by CdCl2 (10 microM) in the presence of Cd-MT (0.01-100 microM). To examine the effect of intracellular MT on cadmium-induced apoptosis in cultured cells, new cell lines were established, which constitutively produce MT, being termed as Cd(r)-LLC-PK1 cells since Cd-MT exogenously added had much less permeability to the cultured cells. Followed by exposure of wild-type LLC-PK1 cells to 50 microM CdCl2 for 24 h, the surviving cells(Cd(r)-LLC-PK1 cells) induce MT at the level of 1.9 microg/2 x 10(6) cells. In Cd(r)-LLC-PK1 cells, 10 microM CdCl2 failed to induce apoptosis, but 60 microM CdCl2 could exert the apoptotic response, indicating that intracellular MT which was induced by CdCl2 did not facilitate CdCl2-elicited apoptosis. Furthermore, chromatin in rat kidneys was condensed by Cd-MT, but not that in LLC-PK1 cells. Thus, Cd-MT induces apoptosis in rat kidneys, but not in the cultured renal cells, suggesting that the ionic form of cadmium was required for programmed cell death.  相似文献   

10.
The aim of the present study was to compare the influence of cultured epididymal epithelial cells (EEC) from corpus, caput or cauda, oviductal epithelial cells (OEC) and non-reproductive epithelial cells (LLC-PK1) on function and survival of epididymal and ejaculated spermatozoa, in the latter case to determine whether such influence differed between morphologically normal and abnormal spermatozoa. For this purpose, either spermatozoa were directly co-cultured with EEC from caput, corpus, or cauda, OEC and LLC-PK1 cells (experiment 1) or a membrane-diffusible insert was included in these co-cultures (experiment 2). EEC cultured from the three epididymal regions did not differently affect the sperm parameters. Morphologically normal spermatozoa presented a higher ability to bind EEC, OEC, and LLC-PK1 than abnormal spermatozoa with cytoplasmic droplets or with tail/head malformations. Epididymal spermatozoa were more able to bind EEC during the first 24 h of co-culture, while ejaculated spermatozoa presented a higher capacity to bind OEC between 30 min and 3 h of co-incubation. In all cases, the ability to bind to epithelial cells was higher when they were co-cultured with EEC and OEC than with LLC-PK1. After 2 h of co-culture, the viability of epididymal spermatozoa was better maintained when they bound EEC than when they bound OEC. Conversely, the viability of ejaculated spermatozoa was better maintained when bound OEC than when bound EEC after 24 and 48 h of co-culture. Our work, apart from corroborating the involvement of morphologically normal spermatozoa in the formation of sperm reservoir, highlights the importance of direct contact spermatozoa-EEC in maintaining the sperm survival in in vitro co-culture, and also suggests that a specific binding between EEC and epididymal spermatozoa exists.  相似文献   

11.
The ability of S-(1,2-dichlorovinyl)-L-cysteine (DCVC), S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC), S-(1,2,3,4,4-pentachlorobutadienyl)-L-cysteine (PCBC), S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine (CTFEC) and S-(2-chloroethyl)-L-cysteine (CEC) to induce DNA repair was investigated in LLC-PK1, a cultured line of porcine kidney tubular epithelial cells. DNA repair due to exposure of the cells to the S-conjugates was determined as unscheduled DNA synthesis (UDS) after inhibition of replicative DNA synthesis in confluent LLC-PK1 monolayers. DCVC, TCVC and PCBC induced dose-dependent UDS in LLC-PK1 at concentrations which did not impair the viability of the cells compared to untreated controls; higher concentrations were cytotoxic, resulting in lactate dehydrogenase leakage into the medium. Cell death was also induced by CTFEC, which failed to exert genotoxicity. CEC induced the highest response among these cysteine conjugates without impairing cell viability. Inhibition of cysteine conjugate beta-lyase with aminooxyacetic acid abolished the effects of DCVC, TCVC, PCBC and CTFEC but did not influence the genotoxicity of CEC.  相似文献   

12.
Rabbit kidney proximal convoluted tubule (RPCT) and proximal straight tubule (RPST) cells were independently isolated and cultured. The kinetics of the sodium-dependent glucose transport was characterized by determining the uptake of the glucose analog alpha-methylglucopyranoside. Cell culture and assay conditions used in these experiments were based on previous experiments conducted on the renal cell line derived from the whole kidney of the Yorkshire pig (LLC-PK1). Results indicated the presence of two distinct sodium-dependent glucose transporters in rabbit renal cells: a relatively high-capacity, low-affinity transporter (V(max) = 2.28 +/- 0.099 nmoles/mg protein min, Km = 4.1 +/- 0.27 mM) in RPCT cells and a low-capacity, high-affinity transporter (V(max) = 0.45 +/- 0.076 nmoles/mg protein min, K(m) = 1.7 +/- 0.43 mM) in RPST cells. A relatively high-capacity, low-affinity transporter (V(max) = 1.68 +/- 0.215 nmoles/mg protein min, Km = 4.9 +/- 0.23 mM) was characterized in LLC-PK1 cells. Phlorizin inhibited the uptake of alpha-methylglucopyranoside in proximal convoluted, proximal straight, and LLC-PK1 cells by 90, 50, and 90%, respectively. Sodium-dependent glucose transport in all three cell types was specific for hexoses. These data are consistent with the kinetic heterogeneity of sodium-dependent glucose transport in the S1-S2 and S3 segments of the mammalian renal proximal tubule. The RPCT-RPST cultured cell model is novel, and this is the first report of sodium-dependent glucose transport characterization in primary cultures of proximal straight tubule cells. Our results support the use of cultured monolayers of RPCT and RPST cells as a model system to evaluate segment-specific differences in these renal cell types.  相似文献   

13.
The role of mitochondrial KATP (mitoKATP) channels in renal ischemia-reperfusion injury is controversial with studies showing both protective and deleterious effects. In this study, we compared the effects of the putative mitoKATP opener, diazoxide, and the mitoKATP blocker, 5-hydroxydecanoate (5-HD) on cytotoxicity and apoptosis in tubular epithelial cells derived from rat (NRK-52E) and pig (LLC-PK1) following in vitro ischemic injury. Following ATP depletion-recovery, there was a significant increase in cytotoxicity in both NRK cells and LLC-PK1 cells although NRK cells were more sensitive to the injury. Diazoxide treatment attenuated cytotoxicity in both cell types and 5-HD treatment-increased cytotoxicity in the sensitive NRK cells in a superoxide-dependant manner. The protective effect of diazoxide was also reversed in the presence of 5-HD in ATP-depleted NRK cells. The ATP depletion-mediated increase in superoxide was enhanced by both diazoxide and 5-HD with the effect being more pronounced in the cells undergoing 5-HD treatment. Further, ATP depletion-induced activation of caspase-3 was decreased by diazoxide in NRK cells. In order to determine the signaling pathways involved in apoptosis, we examined the activation of Erk and JNK in ATP-depleted NRK cells. Diazoxide-activated Erk in ATP-depleted cells, but did not have any effect on JNK activation. In contrast, 5-HD did not impact Erk levels but increased JNK activation even under controlled conditions. Further, the use of a JNK inhibitor with 5-HD reversed the deleterious effects of 5-HD. This study demonstrates that in cells that are sensitive to ATP depletion-recovery, mitoKATP channels protect against ATP depletion-mediated cytotoxicity and apoptosis through Erk- and JNK-dependant mechanisms.  相似文献   

14.
We have investigated the mechanisms whereby alpha(2B)-adrenergic receptor (alpha(2B)-AR) promotes MAPK activation in a clone of the renal tubular cell line, LLC-PK1, transfected with the rat nonglycosylated alpha(2)-AR gene. Treatment of LLC-PK1-alpha(2B) with UK14304 or dexmedetomidine caused arachidonic acid (AA) release and ERK2 phosphorylation. AA release was abolished by prior treatment of the cells with pertussis toxin, quinacrine, or methyl arachidonyl fluorophosphonate but not by the addition of the MEK inhibitor U0126. The effects of alpha(2)-agonists on MAPK phosphorylation were mimicked by cell exposure to exogenous AA. On the other hand, quinacrine abolished the effects of UK14304, but not of AA, suggesting that AA released through PLA2 is responsible for MAPK activation by alpha(2B)-AR. The effects of alpha(2)-agonists or AA were PKC-independent and were attenuated by indomethacin and nordihydroguaiaretic acid. Treatment with batimastat, CRM 197, or tyrphostin AG1478 suppressed MAPK phosphorylation promoted by alpha(2)-agonist or AA. Furthermore, conditioned culture medium from UK14304-treated LLC-PK1-alpha(2B) induced MAPK phosphorylation in wild-type LLC-PK1. Based on these data, we propose a model whereby activation of MAPK by alpha(2B)-AR is mediated through stimulation of PLA2, AA release, generation of AA derivatives, activation of matrix metalloproteinases, release of heparin-binding EGF-like growth factor, transactivation of epidermal growth factor receptor, and recruitment of Shc. Whether this pathway is particular to alpha(2B)-AR and LLC-PK1 or whether it can be extended to other cell types and/or other G-protein-coupled receptors remains to be established.  相似文献   

15.
The LLC-PK1 cell line transports phosphate (Pi), glucose, and amino acids using carriers similar to those in proximal tubular cells. Others have reported that when monolayers reach confluence, hexose transport increases and activity of the A-amino acid transporter falls. The present study evaluates Pi uptake by two continuous cell lines derived from renal proximal tubule, and demonstrates that phosphate uptake falls sharply upon reaching confluence in LLC-PK1 cells but not in cultured opossum kidney (OK) cells. The fall in Pi uptake in LLC-PK1 cells at confluence represents a halving in Vmax for Na-dependent phosphate uptake (2.33 vs. 5.00 nmol/mg protein/5 min) without a change in Km (82 vs. 94 microM). Suppression of phosphate transport in confluent monolayers of LLC-PK1 cells is completely reversed by bringing the cells into suspension. As has been shown for the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA), exposure of monolayers to serum stimulates phosphate uptake, but unlike phorbol ester, serum does so without stimulating alanine uptake. OK cells differ from LLC-PK1 in that no change occurs in Pi uptake at confluence, although they resemble LLC-PK1 cells in that sugar uptake rises and alanine uptake falls at confluence. The different temporal patterns for Pi uptake in the two cell lines indicates that developmental change in the uptake of Pi is not linked to that of glucose or alanine.  相似文献   

16.
Glycogen synthase kinase 3β (GSK3β) is increased by high glucose in mesangial cells. Thus, we studied the role of GSK3β in advanced glycation end-product (AGE)-induced effects in the proximal tubule-like LLC-PK1 cells. We found that AGE (100 μg/ml) time-dependently (8-48 h) increased phospho-GSK3β-Tyr216 (active GSK3β) and time-dependently (4-24 h) decreased phospho-GSK3β-Ser21/9 (inactive GSK3β) protein expression. Meanwhile, AGE (100 μg/ml) activated GSK3β kinase at 8-48 h. AGE (100 μg/ml) dose-dependently (75-100 μg/ml) decreased β-catenin protein expression but AGE did not decrease β-catenin protein expression until 48 h. SB216763 (a GSK3β inhibitor) and GSK3β shRNA attenuated AGE (100 μg/ml)-inhibited cell proliferation and protein expression of β-catenin and cyclin D1 at 48 h. SB216763 also attenuated AGE-induced type IV collagen. We conclude that AGE activates GSK3β in LLC-PK1 cells. AGE-inhibited β-catenin and cyclin D1 protein expression are dependent on GSK3β. Moreover, AGE-inhibited cell proliferation and AGE-induced type IV collagen protein expression are dependent on GSK3β.  相似文献   

17.
Miao J  Fa Y  Gu B  Zhu W  Zou S 《Cytokine》2012,59(1):35-40
The intent of this study was to evaluate the active defense reaction of mouse mammary epithelial cells and the cytoprotective and anti-inflammatory properties of taurine to lipopolysaccharide (LPS)-induced disfunction in mouse mammary epithelial cells. (1) Primary cultured mouse mammary epithelial cells were stimulated with LPS for 24 h (final concentration=0, 5, 10, 20 μg/mL). Western blotting demonstrated a significant decrease in the secretion of β-casein in the 20 μg/mL LPS treatment group (P<0.05), while nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), lactoferrin (LF) and N-acetyl-β-D-glucosaminidase (NAGase) were all significantly increased following LPS treatment (P<0.01). Furthermore, cell survival was significantly inhibited after treatment with 20 μg/mL LPS; however, neither 5 μg/mL nor 10 μg/mL LPS had any effect on cell survival. Therefore, a level of 10 μg/mL LPS was selected to test the protective effect of taurine on mouse mammary epithelial cells. (2) Primary cultured mouse mammary epithelial cells were treated with 0, 5, 15 or 45 mmol/L taurine for 3 h, followed by 10 μg/mL LPS for 24 h. Taurine significantly attenuated the LPS-induced increase in NAGase activity, NO concentrations and the level of TNF-α, IL-1β, IL-6 and LF. Taurine at 45 mmol/L markedly increased β-casein secretion in response to LPS-induced disfunction. This study demonstrated that the addition of taurine to a culture medium significantly inhibited the LPS-induced release of inflammatory factors and increased β-casein secretion from mammary epithelial cells, thereby providing a possible explanation for the protective effect proposed for taurine in the prevention of LPS-induced disfunction in mammary epithelial cells.  相似文献   

18.
Oviductal epithelial cell (OEC) co-culture prolongs sperm viability and motility in vitro in a number of species including humans and horses. This study has sought to determine the effects of homologous OEC co-culture on boar sperm function. To determine whether the effects on spermatozoa were specifically caused by co-culture with or by OEC secretions, or by both factors together, a number of co-culture and cell-conditioned medium (CM) experiments were conducted. Firstly, Percoll-washed spermatozoa were co-cultured with OECs and pig kidney epithelial (LLC-PK1) cells, and in medium without cells. Secondly, Percoll-washed spermatozoa were incubated with CM derived from both OECs and LLC-PK1 cells and in unconditioned medium. A number of sperm function parameters were assessed after 5, 30, 60, 90, 120, and 180 min, and 24h of co-culturing or incubation with CM. Of all the sperm function parameters investigated, the percentage (%) viability data yielded the most interesting results. OECs (mean+/-S.E.M.; 31.2+/-1.10) were better than LLC-PK1 cells (24.3+/-0.93) at prolonging the viability of unbound spermatozoa after 24h of co-culturing (P<0.05). Also after 24h, the viability of spermatozoa bound to the OECs (77.6+/-1.83) was significantly higher than in the case of the LLC-PK1 cells (53.5+/-1.43; P<0.001). Other sperm function parameters, e.g., capacitation and motility, were also influenced by OEC co-culturing and incubation with CM, although to a lesser degree. In conclusion, porcine homologous OEC co-culture and CM incubation specifically affect sperm function. However, we propose that it is OEC co-culturing, rather than OEC-CM, that has the greater influence.  相似文献   

19.
Receptor binding activities and cyclic GMP responses by alpha-human atrial natriuretic polypeptide (alpha-hANP) and its fragments were studied in a kidney epithelial cell line (LLC-PK1). Binding of 125I-alpha-hANP to the cells at 0 degrees C was saturable, time-dependent and reversible, indicating the presence of a single class of binding sites. alpha-hANP (7-23)NH2 fragment inhibited most effectively the specific binding of 125I-alpha-hANP to the LLC-PK1 cells, followed by alpha-hANP (17-28) and alpha-hANP (8-22), while alpha-hANP (1-6) and alpha-hANP (24-28) did not. alpha-hANP stimulated the formation of cyclic GMP in the LLC-PK1 cells dose-dependently. Although no fragments of alpha-hANP used were effective for cyclic GMP formation in the LLC-PK1 cells, alpha-hANP (7-23) NH2 antagonized the action of alpha-hANP on cyclic GMP formation. These data suggest that the LLC-PK1 cells retain specific receptors for atrial natriuretic polypeptide (ANP) and respond to ANP by stimulating cyclic GMP formation, and therefore this cell line may be useful for studying the mechanism of action for ANP in renal tubular cells.  相似文献   

20.
The role of N-glycosylation in the function and biosynthesis of the vasopressin V2-receptor in LLC-PK1 renal epithelial cells was examined using various lectins and inhibitors operating at different steps of the glycosidic pathway. Tunicamycin, which blocks all N-glycosylation, and castanospermine, which inhibits glycosidase I and hence blocks formation of high-mannose-type N-glycosylated intermediates, resembled one another in affecting V2-receptor biosynthesis and internalization in a concentration-dependent manner. In contrast, swainsonine, an inhibitor of mannosidase II and hence of complex-type oligosaccharide formation, had no effect. Interestingly, the alpha-D-mannose/alpha-D-glucose-specific lectin concanavalin A, (Con A), in contrast to the beta-D-galactose-specific lectin ricin, had a marked effect on the V2-receptor in LLC-PK1 cells, increasing both receptor numbers up to twofold in vivo and specific [3H]AVP binding up to 50% in vitro in a concentration-dependent manner. The concentrations inducing half-maximal response were about 0.2 and 20 micrograms/ml for the in vivo and in vitro responses, respectively, implying distinct effects on V2-expression and ligand binding. That the in vitro effect on binding was due to a direct effect on the V2-receptor could be shown by the lack of a Con A effect on [3H]AVP binding in membranes prepared from LLC-PK1 cells down-regulated for the V2-receptor or from cells of the LLC-PK1 V2-receptor deficient mutant M18. All results were consistent with a functional role for N-glycosylation of the V2-receptor in LLC-PK1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号