首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternative oxidase (AOX) catalyzes the four-electron reduction of dioxygen to water as an additional terminal oxidase, and the catalytic reaction is critical for the parasite to survive in its bloodstream form. Recently, the X-ray crystal structure of trypanosome alternative oxidase (TAO) complexed with ferulenol was reported and the molecular structure of the non-heme diiron center was determined. The binding of O2 was a unique side-on type compared to other iron proteins. In order to characterize the O2 binding state of TAO, the O2 binding states were searched at a quantum mechanics/molecular mechanics (QM/MM) theoretical level in the present study. We found that the most stable O2 binding state is the end-on type, and the binding states of the side-on type are higher in energy. Based on the binding energies and electronic structure analyses, O2 binds very weakly to the TAO iron center (ΔE =6.7 kcal mol?1) in the electronic state of Fe(II)…OO, not in the suggested charge transferred state such as the superoxide state (Fe(III)OO· ) as seen in hemerythrin. Coordination of other ligands such as water, Cl?, CN?, CO, N3? and H2O2 was also examined, and H2O2 was found to bind most strongly to the Fe(II) site by ΔE = 14.0 kcal mol?1. This was confirmed experimentally through the measurement of ubiquinol oxidase activity of TAO and Cryptosporidium parvum AOX which was found to be inhibited by H2O2 in a dose-dependent and reversible manner.  相似文献   

2.
《BBA》2020,1861(10):148247
The alternative oxidase (AOX) is a monotopic di‑iron carboxylate protein which acts as a terminal respiratory chain oxidase in a variety of plants, fungi and protists. Of particular importance is the finding that both emerging infectious diseases caused by human and plant fungal pathogens, the majority of which are multi-drug resistant, appear to be dependent upon AOX activity for survival. Since AOX is absent in mammalian cells, AOX is considered a viable therapeutic target for the design of specific fungicidal and anti-parasitic drugs.In this work, we have mutated conserved residues within the hydrophobic channel (R96, D100, R118, L122, L212, E215 and T219), which crystallography has indicated leads to the active site. Our data shows that all mutations result in a drastic reduction in Vmax and catalytic efficiency whilst some also affected the Km for quinol and oxygen. The extent to which mutation effects inhibitor sensitivity was also investigated, with mutation of R118 and T219 leading to a complete loss of inhibitor potency. However, only a slight reduction in IC50 values was observed when R96 was mutated, implying that this residue is less important in inhibitor binding. In silico modelling has been used to provide insight into the reason for such changes, which we suggest is due to disruptions in the proton transfer network, resulting in a reduction in overall reaction kinetics. We discuss our results in terms of the structural features of the ubiquinol binding site and consider the implications of such findings on the nature of the catalytic cycle.SignificanceThe alternative oxidase is a ubiquinol oxidoreductase enzyme that catalyses the oxidation of ubiquinol and the reduction of oxygen to water. It is widely distributed amongst the plant, fungal and parasitic kingdoms and plays a central role in metabolism through facilitating the turnover of the TCA cycle whilst reducing ROS production.  相似文献   

3.
Plasmodium falciparum is an apicomplexan parasite that causes the most severe malaria in humans. Due to a lack of effective vaccines and emerging of drug resistance parasites, development of drugs with novel mechanisms of action and few side effects are imperative. To this end, ideal drug targets are those essential to parasite viability as well as absent in their mammalian hosts. The mitochondrial electron transport chain (ETC) of P. falciparum is one source of such potential targets because enzymes, such as L-malate:quinone oxidoreductase (PfMQO), in this pathway are absent humans. PfMQO catalyzes the oxidation of L-malate to oxaloacetate and the simultaneous reduction of ubiquinone to ubiquinol. It is a membrane protein, involved in three pathways (ETC, the tricarboxylic acid cycle and the fumarate cycle) and has been shown to be essential for parasite survival, at least, in the intra-erythrocytic asexual stage. These findings indicate that PfMQO would be a valuable drug target for development of antimalarial with novel mechanism of action. Up to this point in time, difficulty in producing active recombinant mitochondrial MQO has hampered biochemical characterization and targeted drug discovery with MQO. Here we report for the first time recombinant PfMQO overexpressed in bacterial membrane and the first biochemical study. Furthermore, about 113 compounds, consisting of ubiquinone binding site inhibitors and antiparasitic agents, were screened resulting in the discovery of ferulenol as a potent PfMQO inhibitor. Finally, ferulenol was shown to inhibit parasite growth and showed strong synergism in combination with atovaquone, a well-described anti-malarial and bc1 complex inhibitor.  相似文献   

4.
The alternative oxidase (AOX) is a ubiquinol oxidase found in the mitochondrial respiratory chain of plants as well as some fungi and protists. It has been predicted to contain a coupled diiron center on the basis of a conserved sequence motif consisting of the proposed iron ligands, four glutamate and two histidine residues. However, this prediction has not been experimentally verified. Here we report the high level expression of the Arabidopsis thaliana alternative oxidase AOX1a as a maltose-binding protein fusion in Escherichia coli. Reduction and reoxidation of a sample of isolated E. coli membranes containing the alternative oxidase generated an EPR signal characteristic of a mixed-valent Fe(II)/Fe(III) binuclear iron center. The high anisotropy of the signal, the low value of the g-average tensor, and a small exchange coupling (-J) suggest that the iron center is hydroxo-bridged. A reduced membrane preparation yielded a parallel mode EPR signal with a g-value of about 15. In AOX containing a mutation of a putative glutamate ligand of the diiron center (E222A or E273A) the EPR signals are absent. These data provide evidence for an antiferromagnetic-coupled binuclear iron center, and together with the conserved sequence motif, identify the alternative oxidase as belonging to the growing family of diiron carboxylate proteins. The alternative oxidase is the first integral membrane protein in this family, and adds a new catalytic activity (ubiquinol oxidation) to this group of enzymatically diverse proteins.  相似文献   

5.
Trypanosome alternative oxidase (TAO) is the cytochrome-independent terminal oxidase of the mitochondrial electron transport chain. TAO is a diiron protein that transfers electrons from ubiquinol to oxygen, reducing the oxygen to water. The mammalian bloodstream forms of Trypanosoma brucei depend solely on TAO for respiration. The inhibition of TAO by salicylhydroxamic acid (SHAM) or ascofuranone is trypanocidal. TAO is present at a reduced level in the procyclic form of T. brucei, where it is engaged in respiration and is also needed for developmental processes. Alternative oxidases similar to TAO have been found in a wide variety of organisms but not in mammals, thus rendering TAO an important chemotherapeutic target for African trypanosomiasis.  相似文献   

6.
The alternative oxidase is a respiratory chain protein found in plants, fungi and some parasites that still remains physically uncharacterised. In this report we present EPR evidence from parallel mode experiments which reveal signals at approximately g = 16 in both purified alternative oxidase protein (g = 16.9), isolated mitochondrial membranes (g = 16.1), and in trypanosomal AOX expressed in Escherichia coli membranes (g = 16.4). Such signals are indicative of a dicarboxylate diiron centre at the active site of the enzyme. To our knowledge these data represent the first EPR signals from AOX present in its native environment.  相似文献   

7.
8.
Alternative oxidase (AOX) is a terminal oxidase within the inner mitochondrial membrane (IMM) present in many organisms where it functions in the electron transport system (ETS). AOX directly accepts electrons from ubiquinol and is therefore capable of bypassing ETS Complexes III and IV. The human genome does not contain a gene coding for AOX, so AOX expression has been suggested as a gene therapy for a range of human mitochondrial diseases caused by genetic mutations that render Complex III and/or IV dysfunctional. An effective means of screening mutations amenable to AOX treatment remains to be devised. We have generated such a tool by heterologously expressing AOX from the Pacific oyster (Crassostrea gigas) in the yeast Saccharomyces cerevisiae under the control of a galactose promoter. Our results show that this animal AOX is monomeric and is correctly targeted to yeast mitochondria. Moreover, when expressed in yeast, Pacific oyster AOX is a functional quinol oxidase, conferring cyanide-resistant growth and myxothiazol-resistant oxygen consumption to yeast cells and isolated mitochondria. This system represents a high-throughput screening tool for determining which Complex III and IV genetic mutations in yeast will be amenable to AOX gene therapy. As many human genes are orthologous to those found in yeast, our invention represents an efficient and cost-effective way to evaluate viable research avenues. In addition, this system provides the opportunity to learn more about the localization, structure, and regulation of AOXs from animals that are not easily reared or manipulated in the lab.  相似文献   

9.
Atovaquone is a substituted 2-hydroxy-naphthoquinone used therapeutically against Plasmodium falciparum (malaria) and Pneumocystis pathogens. It acts by inhibiting the cytochrome bc1 complex via interactions with the Rieske iron-sulfur protein and cytochrome b in the ubiquinol oxidation pocket. As the targeted pathogens have developed resistance to this drug there is an urgent need for new alternatives. To better understand the determinants of inhibitor binding in the ubiquinol oxidation pocket of the bc1 complex we synthesized a series of hydroxy-naphthoquinones bearing a methyl group on the benzene ring that is predicted to interact with the nuclear encoded Rieske iron-sulfur protein. We have also attempted to overcome the metabolic instability of a potent cytochrome bc1 complex inhibitor, a 2-hydroxy-naphthoquinone with a branched side chain, by fluorinating the terminal methyl group. We have tested these new 2-hydroxy-naphthoquinones against yeast and bovine cytochrome bc1 complexes to model the interaction with pathogen and human enzymes and determine parameters that affect efficacy of binding of these inhibitors. We identified a hydroxy-naphthoquinone with a trifluoromethyl function that has potential for development as an anti-fungal and anti-parasitic therapeutic.  相似文献   

10.
Cryptosporidium parvum is a parasitic protozoan that causes the diarrheal disease cryptosporidiosis, for which no satisfactory chemotherapy is currently available. Although the presence of mitochondria in this parasite has been suggested, its respiratory system is poorly understood due to difficulties in performing biochemical analyses. In order to better understand the respiratory chain of C. parvum, we surveyed its genomic DNA database in GenBank and identified a partial sequence encoding cyanide-insensitive alternative oxidase (AOX). Based on this sequence, we cloned C. parvum AOX (CpAOX) cDNA from the phylum apicomplexa for the first time. The deduced amino acid sequence (335 a.a.) of CpAOX contains diiron coordination motifs (-E-, -EXXH-) that are conserved among AOXs. Phylogenetic analysis suggested that CpAOX is a mitochondrial-type AOX, possibly derived from mitochondrial endosymbiont gene transfer. The recombinant enzyme expressed in Escherichia coli showed quinol oxidase activity. This activity was insensitive to cyanide and highly sensitive to ascofuranone, a specific inhibitor of trypanosome AOX.  相似文献   

11.
The trypanosome alternative oxidase (TAO) functions in the African trypanosomes as a cytochrome-independent terminal oxidase, which is essential for their survival in the mammalian host and as it does not exist in the mammalian host is considered to be a promising drug target for the treatment of trypanosomiasis. In the present study, recombinant TAO (rTAO) overexpressed in a haem-deficient Escherichia coli strain has been solubilized from E. coli membranes and purified to homogeneity in a stable and highly active form. Analysis of bound iron detected by inductively coupled plasma-mass spectrometer (ICP-MS) reveals a stoichiometry of two bound iron atoms per monomer of rTAO. Confirmation that the rTAO was indeed a diiron protein was obtained by EPR analysis which revealed a signal, in the reduced forms of rTAO, with a g-value of 15. The kinetics of ubiquiol-1 oxidation by purified rTAO showed typical Michaelis-Menten kinetics (Km of 338 μM and Vmax of 601 μmol/min/mg), whereas ubiquinol-2 oxidation showed unusual substrate inhibition. The specific inhibitor, ascofuranone, inhibited the enzyme in a mixed-type inhibition manner with respect to ubiquinol-1.  相似文献   

12.
The alternative oxidase (AOX) is a non-protonmotive ubiquinol oxidase that is found in mitochondria of all higher plants studied to date. To investigate the role of highly conserved amino acid residues in catalysis we have expressed site-directed mutants of Cys-172, Thr-179, Trp-206, Tyr-253, and Tyr-299 in AOX in the yeast Schizosaccharomyces pombe. Assessment of AOX activity in isolated yeast mitochondria reveals that mutagenesis of Trp-206 to phenylalanine or tyrosine abolishes activity, in contrast to that observed with either Tyr-253 or 299 both mutants of which retained activity. None of the mutants exhibited sensitivity to Q-like inhibitors that differed significantly from the wild type AOX. Interestingly, however, mutagenesis of Thr-179 or Cys-172 (a residue implicated in AOX regulation by α-keto acids) to alanine not only resulted in a decrease of maximum AOX activity but also caused a significant increase in the enzyme's affinity for oxygen (4- and 2-fold, respectively). These results provide important new insights in the mechanism of AOX catalysis and regulation by pyruvate.  相似文献   

13.
Hydroxy-naphthoquinones are competitive inhibitors of the cytochrome bc1 complex that bind to the ubiquinol oxidation site between cytochrome b and the iron-sulfur protein and presumably mimic a transition state in the ubiquinol oxidation reaction catalyzed by the enzyme. The parameters that affect efficacy of binding of these inhibitors to the bc1 complex are not well understood. Atovaquone®, a hydroxy-naphthoquinone, has been used therapeutically to treat Pneumocystis carinii and Plasmodium infections. As the pathogens have developed resistance to this drug, it is important to understand the molecular basis of the drug resistance and to develop new drugs that can circumvent the drug resistance. We previously developed the yeast and bovine bc1 complexes as surrogates to model the interaction of atovaquone with the bc1 complexes of the target pathogens and human host. As a first step to identify new cytochrome bc1 complex inhibitors with therapeutic potential and to better understand the determinants of inhibitor binding, we have screened a library of 2-hydroxy-naphthoquinones with aromatic, cyclic, and non-cyclic alkyl side-chain substitutions at carbon-3 on the hydroxy-quinone ring. We found a group of compounds with alkyl side-chains that effectively inhibit the yeast bc1 complex. Molecular modeling of these into the crystal structure of the yeast cytochrome bc1 complex provides structural and quantitative explanations for their binding efficacy to the target enzyme. In addition we also identified a 2-hydroxy-naphthoquinone with a branched side-chain that has potential for development as an anti-fungal and anti-parasitic therapeutic.  相似文献   

14.
The conversion from methane to methanol is catalyzed by methane monooxygenase (MMO) in methanotrophic bacteria. Earlier work on the crystal structures of the MMO hydroxylase component (MMOH) from Methylococcus capsulatus (Bath) at 4??°C and –160??°C has revealed two different core arrangements for the diiron active site. To ascertain the generality of these results, we have now carried out the first structural characterization on MMOH from Methylosinus trichosporium OB3b. Our X-ray absorption spectroscopic (XAS) analysis suggests the presence of two Fe-Fe distances of about 3?Å and 3.4?Å, which are proposed to reflect two populations of MMOH molecules with either a bis(μ-hydroxo)(μ-carboxylato)- or a (μ-hydroxo)(μ-carboxylato)diiron(III) core structure, respectively. The observation of these two different core structures, together with the crystallographic results of the MMOH from Methylococcus capsulatus (Bath), suggests the presence of an equilibrium that may reflect a core flexibility that is required to accommodate the various intermediates in the catalytic cycle of the enzyme. XAS studies on the binding of component B (MMOB) to the hydroxylase component show that MMOB does not perturb either this equilibrium or the gross structure of the oxidized diiron site in MMOH.  相似文献   

15.
Alcohol oxidase (AOX), the first enzyme in the yeast methanol utilization pathway is a homooctameric peroxisomal matrix protein. In peroxisome biogenesis-defective (pex) mutants of the yeast Pichia pastoris, AOX fails to assemble into active octamers and instead forms inactive cytoplasmic aggregates. The apparent inability of AOX to assemble in the cytoplasm contrasts with other peroxisomal proteins that are able to oligomerize before import. To further investigate the import of AOX, we first identified its peroxisomal targeting signal (PTS). We found that sequences essential for targeting AOX are primarily located within the four COOH-terminal amino acids of the protein leucine-alanine-arginine-phenylalanine COOH (LARF). To examine whether AOX can oligomerize before import, we coexpressed AOX without its PTS along with wild-type AOX and determined whether the mutant AOX could be coimported into peroxisomes. To identify the mutant form of AOX, the COOH-terminal LARF sequence of the protein was replaced with a hemagglutinin epitope tag (AOX–HA). Coexpression of AOX–HA with wild-type AOX (AOX-WT) did not result in an increase in the proportion of AOX–HA present in octameric active AOX, suggesting that newly synthesized AOX–HA cannot oligomerize with AOX-WT in the cytoplasm. Thus, AOX cannot initiate oligomerization in the cytoplasm, but must first be targeted to the organelle before assembly begins.  相似文献   

16.
17.
The alternative oxidase (AOX) is a non-protonmotive ubiquinol oxidase that is found in all plants, some fungi, green algae, bacteria and pathogenic protozoa. The lack of AOX in the mammalian host renders this protein an important potential therapeutic target in the treatment of pathogenic protozoan infections. Bioinformatic searches revealed that, within a putative ubiquinol-binding crevice in AOX, Gln242, Asn247, Tyr253, Ser256, His261 and Arg262 were highly conserved. To confirm that these amino-acid residues are important for ubiquinol-binding and hence activity substitution mutations were generated and characterised. Assessment of AOX activity in isolated Schizosaccharomyces pombe mitochondria revealed that mutation of either Gln242, Ser256, His261 and Arg262 resulted in >90% inhibition of antimycin A-insensitive respiration suggesting that hydroxyl, guanidino, imidazole groups, polar and charged residues in addition to the size of the amino-acid chain are important for ubiquinone-binding. Substitution of Asn247 with glutamine or Tyr253 with phenylalanine had little effect upon the respiratory rate indicating that these residues are not critical for AOX activity. However replacement of Tyr253 by alanine resulted in a 72% loss of activity suggesting that the benzoquinone group and not hydroxyl group is important for quinol binding. These results provide important new insights into the ubiquinol-binding site of the alternative oxidase, the identity of which maybe important for future rational drug design.  相似文献   

18.
The mitochondrial alternative oxidase (AOX) and the plastid terminal oxidase (PTOX) are two similar members of the membrane-bound diiron carboxylate group of proteins. AOX is a ubiquinol oxidase present in all higher plants, as well as some algae, fungi, and protists. It may serve to dampen reactive oxygen species generation by the respiratory electron transport chain. PTOX is a plastoquinol oxidase in plants and some algae. It is required in carotenoid biosynthesis and may represent the elusive oxidase in chlororespiration. Recently, prokaryotic orthologues of both AOX and PTOX proteins have appeared in sequence databases. These include PTOX orthologues present in four different cyanobacteria as well as an AOX orthologue in an alpha-proteobacterium. We used PCR, RT-PCR and northern analyses to confirm the presence and expression of the PTOX gene in Anabaena variabilis PCC 7120. An extensive phylogeny of newly found prokaryotic and eukaryotic AOX and PTOX proteins supports the idea that AOX and PTOX represent two distinct groups of proteins that diverged prior to the endosymbiotic events that gave rise to the eukaryotic organelles. Using multiple sequence alignment, we identified residues conserved in all AOX and PTOX proteins. We also provide a scheme to readily distinguish PTOX from AOX proteins based upon differences in amino acid sequence in motifs around the conserved iron-binding residues. Given the presence of PTOX in cyanobacteria, we suggest that this acronym now stand for plastoquinol terminal oxidase. Our results have implications for the photosynthetic and respiratory metabolism of these prokaryotes, as well as for the origin and evolution of eukaryotic AOX and PTOX proteins.  相似文献   

19.
Armen Y. Mulkidjanian 《BBA》2005,1709(1):5-34
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a “hub” in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique “bifurcated” reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule.  相似文献   

20.
Based on amino acid sequence similarity and the ability to catalyze the four-electron reduction of oxygen to water using a quinol substrate, mitochondrial alternative oxidase (AOX) and plastid terminal oxidase (PTOX) appear to be two closely related members of the membrane-bound diiron carboxylate group of proteins. In the current studies, we took advantage of the high activity of Trypanosoma vivax AOX (TvAOX) to examine the importance of the conserved Glu and the Tyr residues around the predicted third helix region of AOXs and PTOXs. We first compared the amino acid sequences of TvAOX with AOXs and PTOXs from various taxa and then performed alanine-scanning mutagenesis of TvAOX between amino acids Y(199) and Y(247). We found that the ubiquinol oxidase activity of TvAOX is completely lost in the E214A mutant, whereas mutants E215A and E216A retained more than 30% of the wild-type activity. Among the Tyr mutants, a complete loss of activity was also observed for the Y221A mutant, whereas the activities were equivalent to wild-type for the Y199A, Y212A, and Y247A mutants. Finally, residues Glu(214) and Tyr(221) were found to be strictly conserved among AOXs and PTOXs. Based on these findings, it appears that AOXs and PTOXs are a novel subclass of diiron carboxylate proteins that require the conserved motif E(X)(6)Y for enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号