首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Sirtuin inhibitors as physiological research tools and therapeutic potentials have caught many attentions in last decades. The mimics of acyl lysine have been approved to be a very efficient strategy for development of mechanism-based sirtuin inhibitors. In current study, a novel scaffold of l-S-(3-carboxamidopropyl) cysteine (l-CAPC) has been exploited for design and synthesis of sirtuin inhibitors. As a result, the mimics of Nε-acyl-lysine derived from cysteine including small molecules (5a–m) and peptides (9a–m) have been synthesized. Among these, the peptides 9g and 9h were found to be the most inhibitory potency and selectivity against SIRT2.  相似文献   

2.
To identify cell-active sirtuin inhibitors containing N-thioacetyl lysine, we synthesized compound 1, which was designed based on the structure of the reported N-ethoxycarbonylacetyl lysine-based sirtuin inhibitor NCS-12k. Compound 1 selectively inhibited SIRT1 in enzyme assays. Compound 1 also caused a dose-dependent increase in p53 acetylation in human colon cancer HCT116 cells, indicating the inhibition of SIRT1 in these cells.  相似文献   

3.
Past few years have seen an active pursuit of the inhibitors for the deacylation catalyzed by the seven human sirtuins (i.e. SIRT1-7) as valuable chemical biological/pharmacological probes of this enzymatic deacylation and lead compounds for developing novel therapeutics for human diseases. In the current study, we prepared eight monocyclic and one bicyclic analogs of a linear pentapeptide-based potent (sub-μM IC50’s) pan-SIRT1/2/3 inhibitor Zheng laboratory discovered recently that harbors the catalytic mechanism-based SIRT1/2/3 inhibitory warhead Nε-thioacetyl-lysine at its central position. We found that the bicyclic analog exhibited largely comparable SIRT1/2/3 inhibitory potencies to those of the parent linear pentapeptide, however, the former is proteolytically much more stable than the latter. Moreover, the bicyclic analog displayed very weak inhibition against SIRT5/6/7, was cell permeable, and exhibited an anti-proliferative effect on the human SK-MEL-2 melanoma cells. This bicyclic analog could be a lead for the future development of more potent and still selective pan-SIRT1/2/3 inhibitors whose use in studies on human sirtuin biology, pharmacology, and medicinal chemistry could complement with the use of the potent inhibitors selective for a single human sirtuin.  相似文献   

4.
A series of sirtuin inhibitor candidates were assembled based on an intermediate ester (1a) our accidently discovered. After screening and evaluation, several SIRT2 selective inhibitors were identified, which can inhibit all the deacetylation, defatty-acylation and debenzoylation of SIRT2. Among these inhibitors, compound 1e was the best SIRT2 selective inhibitors. The primary study on the inhibitory mechanism indicated that compound 1e may be a suicide inhibitor acting as an irreversible way. Given almost all reported sirtuin inhibitors are non-covalent, sirtuin covalent inhibitors are still need to be developed. These findings will facilitate for further development of SIRT2 selective and suicide inhibitors.  相似文献   

5.
Conformational modulation of the aryl portion of a set of N,N-bis(cyclohexanol)amine aryl esters (1a-d) that are potent Pgp-dependent MDR inhibitors has been performed. Toward this end the trans-3-(3,4,5-trimethoxyphenyl)acrylic acid present in set 1 was substituted with 3-(3,4,5-trimethoxyphenyl)propanoic and 3-(3,4,5-trimethoxyphenyl)propiolic moieties to give sets 2 and 3, respectively. While the introduction of 3-(3,4,5-trimethoxyphenyl)propanoic moiety resulted in a definite drop in potency and efficacy, esterification with 3-(3,4,5-trimethoxyphenyl)propiolic acid gave four isomers (3a-d) that maintain high potency and possess optimal efficacy. These results are discussed in terms of conformational flexibility of the different sets of compounds.  相似文献   

6.
Sirtuins (SIRTs), class III HDAC (Histone deacetylase) family proteins, are associated with cancer, diabetes, and other age-related disorders. SIRT1 and SIRT2 are established therapeutic drug targets by regulating its function either by activators or inhibitors. Compounds containing indole moiety are potential lead molecules inhibiting SIRT1 and SIRT2 activity. In the current study, we have successfully synthesized 22 indole derivatives in association with an additional triazole moiety that provide better anchoring of the ligands in the binding cavity of SIRT1 and SIRT2. In-vitro binding and deacetylation assays were carried out to characterize their inhibitory effects against SIRT1 and SIRT2. We found four derivatives, 6l, 6m, 6n, and 6o to be specific for SIRT1 inhibition; three derivatives, 6a, 6d and 6k, specific for SIRT2 inhibition; and two derivatives, 6s and 6t, which inhibit both SIRT1 and SIRT2. In-silico validation for the selected compounds was carried out to study the nature of binding of the ligands with the neighboring residues in the binding site of SIRT1. These derivatives open up newer avenues to explore specific inhibitors of SIRT1 and SIRT2 with therapeutic implications for human diseases.  相似文献   

7.
8.
Sirtuin proteins are a highly conserved class of nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacylases. The pleiotropic human isoform 2 of Sirtuins (SIRT2) has been engaged in the pathogenesis of cancer in a plethora of reports around the globe. Thus, SIRT2 modulation is deemed as a promising approach for pharmaceutical intervention. Previously, we reported S-Trityl-l-Cysteine (STLC)-ornamented dimethylaminopyridine chemical entity named STC4 with a significant SIRT2 inhibitory capacity; this was separate from the conventional application of STLC scaffold as a kinesin-5 inhibitor. An interactive molecular docking study of SIRT2 and STC4 showed interaction between Asn168 of SIRT2 and the methyl ester of STC4, that appears to hinder STC4 to reach the selective pocket of the protein unlike strong SIRT2 inhibitor SirReal2. To improve its activity, herein, we utilized S-trityl cysteamine pharmacophore lacking the methyl ester. Nine compounds were synthesized and assayed affording three biopertinent SIRT2 inhibitors, and two of them, STCY1 and STCY6 showed higher inhibitory activity than STC4. These compounds have pronounced anti-proliferative activities against different cancer cell lines. A molecular docking study was executed to shed light on the supposed binding mode of the lead compound, STCY1, into the selective pocket of SIRT2 by interaction of the nitrogen of pyridine ring of the compound and Ala135 of the protein. The outcome of the study exposes that the active compounds are effective intermediates to construct more potent biological agents.  相似文献   

9.
Employing a genetically modified yeast strain as a screening tool, 4-dimethylaminobenzoic acid (5) was isolated from the marine sediment-derived Streptomyces sp. CP27-53 as a weak yeast sirtuin (Sir2p) inhibitor. Using this compound as a scaffold, a series of disubstituted benzene derivatives were evaluated to elucidate the structure activity relationships for Sir2p inhibition. The results suggested that 4-alkyl or 4-alkylaminobenzoic acid is the key structure motif for Sir2p inhibitory activity. The most potent Sir2p inhibitor, 4-tert-butylbenzoic acid (20), among the tested compounds in this study turned out to be a weak but selective SIRT1 inhibitor. The calculated binding free energies between the selected compounds and the catalytic domain of SIRT1 were well correlated to their measured SIRT1 inhibitory activities.  相似文献   

10.
PTP1B (protein tyrosine phosphatase 1B) dephosphorylates the insulin receptor substrate and thus acts as a negative regulator of the insulin and leptin signalling pathway. Recently, it has been considered as a new therapeutic target of intervention for the treatment of type2 diabetes. A series of aryl/alkylsulfonyloxy-5-(3-methoxybenzylidene)thiazolidine-2,4-dione derivatives were synthesized, screened in vitro for their PTP1B inhibitory activity and in vivo for anti-hyperglycaemic activity. Docking results further helped in understanding the nature of interactions governing the binding mode of ligands inside the active site of PTP1B. Among the synthesized compounds, 13 and 16 were found to be potent PTP1B inhibitors having IC50 of 7.31 and 8.73 μM respectively. Significant lowering of blood glucose level was observed in some of the synthesized compounds in in vivo study.  相似文献   

11.
In search of novel anti-influenza agents with higher potency, a series of acylguanidine oseltamivir carboxylate analogues were synthesized and evaluated against influenza viruses (H1N1 and H3N2) in vitro. The representative compounds with strong inhibitory activities (IC50 <40 nM) against neuraminidase (NA) were further tested against the NA from oseltamivir-resistant strain (H259Y). Among them, compounds 9 and 17 were potent NA inhibitors that exhibited a 5 and 11-fold increase in activity comparing with oseltamivir carboxylate (2, OC) against the H259Y mutant, respectively. Furthermore, the effect against influenza virus H259Y mutant (H1N1) replication and cytotoxicity assays indicated that compounds 9 and 17 exhibited a 20 and 6-fold increase than the parent compound 2, and had no obvious cytotoxicity in vitro. Moreover, the molecular docking studies revealed that the docking modes of compounds 9 and 17 were different from that of oseltamivir, and the new hydrogen bonds and hydrophobic interaction were formed in this case. This work provided unique insights in the discovery of potent inhibitors against NAs from wild-type and oseltamivir-resistant strains.  相似文献   

12.
Several novel indirubin-based N-hydroxybenzamides, N-hydropropenamides and N-hydroxyheptanamides (4a-h, 7a-h, 10a-h) were designed using a fragment-based approach with structural features extracted from several previously reported HDAC inhibitors, such as SAHA (vorinostat), MGCD0103 (mocetinostat), nexturastat A and PXD-101 (belinostat). The biological results reveal that our compounds showed excellent cytotoxicity toward three common human cancer cell lines (SW620, PC-3 and NCI-H23) with IC50 values ranging from 0.09 to 0.007 µM. The cytotoxicity of the compounds was equipotent or even up to 10-times more potent than adriamycin and up to 205-times more potent than SAHA. Among the series of N-hydroxypropenamides, compounds 10a-d were the most potent HDAC inhibitors as well as cytotoxicity toward the cell lines tested. In addition, the strong inhibitory activites toward HDAC of our compounds were observed with IC50 values of below-micromolar range. Especially, compound 4a inhibited HDAC6 with an IC50 value of 29-fold lower than that against HDAC2 isoform. Representative compounds 4a and 7a were found to significantly arrest SW620 cells at G0/G1 phase. Compounds 7a and 10a were found to strongly induce apoptosis in SW620 cells. Docking studies revealed some important features affecting the selectivity against HDAC6 isoform. The results clearly demonstrate the potential of the indirubin-hydroxamic acid hybrids and these compounds should be very promising for further development.  相似文献   

13.
A simple and one-pot approach for the synthesis of highly functionalized novel (E)-2-benzylideno-(Z)-carbazolylideno cyanoacetamide derivatives from different 2-(2′,3′,4′,9′-tetrahydro-carbazol-1′-ylidene)-propanedinitriles and aryl/heteroaryl carbaldehydes via vinylogous aldol reaction. The structures of the molecules were designated by FT-IR, 1H NMR, 13C NMR studies, elemental and X-ray crystallographic analysis. The synthesized pure products have been screened for in vitro antibiofilm inhibitory activity towards antibiotic-resistant pathogenic organisms. All the synthesized compounds showed biofilm inhibition. Promisingly, the moieties 3a, 3d and 3h showed higher antibiofilm activity at biofilm inhibitory concentration (BIC) (200?μg/mL) against bacterial pathogens. Among the three moieties, 3a showed high prospective against E. coli biofilm with minimal and maximal BIC percentage of 32% (10?μg/mL) and 89% (100?μg/mL) and chosen lowest BIC for further evaluation. Also, the 3a generate ROS two fold at 1?h treatment in E. coli biofilm. The 3a exhibited no toxic effect on cell viability upto 75?μg/mL in HEK293 cell lines. The results of the present study reveal that among (E)-2-benzylideno-(Z)-carbazolylideno cyanoacetamides, (E)-2-benzylideno-6-methyl-2,3,4,9-tetrahydro-1H-carbazol-(Z)-α-carbamino-α-cyano-1-ylidene (3a) could be exploited as an excellent antibiofilm agent against carbapenem-resistant E. coli bacteria strains.  相似文献   

14.
Sirtuins (SIRT1–SIRT7) are an evolutionary conserved family of NAD+-dependent protein deacylases regulating the acylation state of ε-N-lysine residues of proteins thereby controlling key biological processes. Numerous studies have found association of the aberrant enzymatic activity of SIRTs with various diseases like diabetes, cancer and neurodegenerative disorders. Previously, we have shown that substituted 2-alkyl-chroman-4-one/chromone derivatives can serve as selective inhibitors of SIRT2 possessing an antiproliferative effect in two human cancer cell lines. In this study, we have explored the bioisosteric replacement of the chroman-4-one/chromone core structure with different less lipophilic bicyclic scaffolds to overcome problems associated to poor physiochemical properties due to a highly lipophilic substitution pattern required for achieve a good inhibitory effect. Various new derivatives based on the quinolin-4(1H)-one scaffold, bicyclic secondary sulfonamides or saccharins were synthesized and evaluated for their SIRT inhibitory effect. Among the evaluated scaffolds, the benzothiadiazine-1,1-dioxide-based compounds showed the highest SIRT2 inhibitory activity. Molecular modeling studies gave insight into the binding mode of the new scaffold-replacement analogues.  相似文献   

15.
16.
Curcuma xanthorrhiza is a well-known traditional medicine with anti-inflammatory and anticancer activities, as well as protective effects against neurodegenerative disorders. A previous study revealed the acetylcholinesterase (AChE) inhibitory activity of some sesquiterpenoids from C. xanthorrhiza. In this study, further bioassay-guided isolation led to the identification of nine compounds for the first time from C. xanthorrhiza, including a new Guaiane-type sesquiterpene, zedoaraldehyde (1). Their structures were elucidated using NMR and MS techniques. The AChE inhibitory activities of compounds 1, 3, 4 and 7 were detected as minimum inhibitory quantities of 3, 4, 6 and 1 μg, respectively, using a TLC bioautography assay. Meanwhile, compounds 1, 3, 4 and 8 could promote SIRT1 expression by 1.37-, 1.71-, 1.73- and 1.27-fold, respectively, in HEK293 cell lines exposed to compounds at a concentration of 20 μM for 24 h. SIRT1 is becoming an important drug target for new therapies in the treatment of neurodegenerative diseases. This study indicates the potential of sesquiterpenoids from C. xanthorrhiza for use against Alzheimer's disease.  相似文献   

17.
In the current study, two cyclic tripeptides respectively harboring a thiourea-type and a carboxamide-type of catalytic mechanism-based sirtuin inhibitory warheads as the central residue were found to behave as potent (low μM level) inhibitors against the tRNA-activated human SIRT7 deacetylase activity. Despite exhibiting a potent pan-inhibition against the deacylase activities of the five tested human sirtuins (i.e. SIRT1/2/3/6/7), these two compounds represent the first examples of potent SIRT7 inhibitors ever identified thus far, and their identification could facilitate the future development of more potent and selective SIRT7 inhibitors.  相似文献   

18.
In our search for novel small molecules targeting histone deacetylases, we have designed and synthesized several series of novel N-hydroxybenzamides/N-hydroxypropenamides incorporating quinazolin-4(3H)-ones (4a-h, 8a-d, 10a-d). Biological evaluation showed that these hydroxamic acids were generally cytotoxic against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung cancer). It was found that the N-hydroxypropenamides (10a-d) were the most potent, both in term of HDAC inhibition and cytotoxicity. Several compounds, e.g. 4e, 8b-c, and 10a-c, displayed up to 4-fold more potent than SAHA (suberoylanilide hydroxamic acid, vorinostat) in term of cytotoxicity. These compounds also comparably inhibited HDACs with IC50 values in sub-micromolar range. Docking experiments on HDAC2 isozyme revealed some important features contributing to the inhibitory activity of synthesized compounds, especially for propenamide analogues. Importantly, the free binding energy computed was found to have high quantitative correlation (R2 ∼ 95%) with experimental results.  相似文献   

19.
In an attempt to identify potential HCV NS3 protease inhibitors lead compounds, a series of novel indoles (10a-g) was designed. Molecular modeling study, including fitting to a 3D-pharmacophore model of the designed molecules (10a-g), with HCV NS3 protease hypothesis using catalyst program was fulfilled. Also, the molecular docking into the NS3 active site was examined using Discovery Studio 2.5 software. Several compounds showed significant high simulation docking score and fit values. The designed compounds with high docking score and fit values were synthesized and biologically evaluated in vitro using an NS3 protease binding assay. It appears that most of the tested compounds reveal promising inhibitory activity against NS3 protease. Of these, compounds 10a and 10b demonstrated potent HCV NS3 protease inhibitors with IC50 values of 9 and 12 ??g/mL, respectively. The experimental serine protease inhibitor activities of compounds 10a-g were consistent with their molecular modeling results. Inhibitors from this class have promising characteristics for further development as anti-HCV agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号