首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bisindolylmethane thiosemicarbazides 1-18 were synthesized, characterized by 1H NMR and ESI MS and evaluated for urease inhibitory potential. All analogs showed outstanding urease inhibitory potentials with IC50 values ranging between 0.14?±?0.01 to 18.50?±?0.90?μM when compared with the standard inhibitor thiourea having IC50 value 21.25?±?0.90?μM. Among the series, analog 9 (0.14?±?0.01?μM) with di-chloro substitution on phenyl ring was identified as the most potent inhibitor of urease. The structure activity relationship has been also established on the basis of binding interactions of the active analogs. These binding interactions were identified by molecular docking studies.  相似文献   

2.
A series of 5,6-dimethoxybenzo[d]isothiazol-3(2H)-one-N-alkylbenzylamine derivatives were designed, synthesized and evaluated as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). The in vitro assays indicated that most of these derivatives were selective AChE inhibitors with good multifunctional properties. Among them, compounds 11b and 11d displayed comprehensive advantages, with good AChE (IC50?=?0.29?±?0.01?μM and 0.46?±?0.02?μM, respectively), MAO-A (IC50?=?8.2?±?0.08?μM and 7.9?±?0.07?μM, respectively) and MAO-B (IC50?=?20.1?±?0.16?μM and 43.8?±?2.0% at 10?μM, respectively) inhibitory activities, moderate self-induced Aβ1–42 aggregation inhibitory potency (35.4?±?0.42% and 48.0?±?1.53% at 25?μM, respectively) and potential antioxidant activity. In addition, the two representative compounds displayed high BBB permeability in vitro. Taken together, these multifunctional properties make 11b and 11d as a promising candidate for the development of efficient drugs against AD.  相似文献   

3.
We describe our molecular design of aortic-selective acyl-coenzyme A:cholesterol O-acyltransferase (ACAT, also abbreviated as SOAT) inhibitors, their structure–activity relationships (SARs) and their pharmacokinetic (PK) and pharmacological profiles. The connection of two weak ligands—N-(2,6-diisopropylphenyl)acetamide (50% inhibitory concentration [IC50]?=?8.6?μM) and 2-(methylthio)benzo[d]oxazole (IC50?=?31?μM)—via a linker comprising a 6 methylene group chains yielded a highly potent molecule, 9-(benzo[d]oxazol-2-ylthio)-N-(2,6-diisopropylphenyl)nonanamide (3h) that exhibited high potency (IC50?=?0.004?μM) toward aortic ACAT. This head-to-tail design made it possible to markedly enhance the activity to 2150- to 7750-fold and to discriminate the isoform-selectivity based on the double-induced fit mechanism. At doses of 1 and 3?mg/kg, 3h significantly decreased the lipid-accumulation areas in the aortic arch to 74 and 69%, respectively without reducing the plasma total cholesterol level in high fat- and cholesterol-fed F1B hamsters. Here, we demonstrate the antiatherosclerotic effect of 3hin vivo via its direct action on aortic ACAT and its powerful modulator of cholesterol level. This molecule is a potential therapeutic agent for the treatment of diseases involving ACAT-1 overexpression.  相似文献   

4.
Inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) to prevent brain β-amyloid (Aβ) peptide’s formation is a potential effective approach to treat Alzheimer’s disease. In this report we described a structure-based optimization of a series of BACE1 inhibitors derived from an iminopyrimidinone scaffold W-41 (IC50 = 7.1 μM) by Wyeth, which had good selectivity and brain permeability but low activity. The results showed that occupying the S3 cavity of BACE1 enzyme could be an effective strategy to increase the biological activity, and five compounds exhibited stronger inhibitory activity and higher liposolubility than W-41, with L-5 was the most potent inhibitor against BACE1 (IC50 = 0.12 μM, logP = 2.49).  相似文献   

5.
A series of 2,4-disubstituted phthalazinones were synthesized and their biological activities, including antiproliferation, inhibition against Aurora kinases and cell cycle effects were evaluated. Among them, N-cyclohexyl-4-((4-(1-methyl-1H-pyrazol-4-yl)-1-oxophthalazin-2(1H)-yl) methyl) benzamide (12c) exhibited the most potent antiproliferation against five carcinoma cell lines (HeLa, A549, HepG2, LoVo and HCT116 cells) with IC50 values in range of 2.2–4.6?μM, while the IC50 value of reference compound VX-680 was 8.5–15.3?μM. Moreover, Aurora kinase assays exhibited that compound 12c was potent inhibitor of AurA and AurB kinase with the IC50 values were 118?±?8.1 and 80?±?4.2?nM, respectively. Molecular docking studies indicated that compound 12c forms better interaction with both AurA and AurB. Furthermore, compound 12c induced G2/M cell cycle arrest in HeLa cells by regulating protein levels of cyclinB1 and cdc2. These results suggested that 12c is a promising pan-Aurora kinase inhibitor for the potential treatment of cancer.  相似文献   

6.
By recruiting the important moiety from Shikonin, a series of novel oxoindoline derivatives S1S20 have been synthesized for inhibiting H. pylori urease. The most potent compound S18 displayed better activity (IC50?=?0.71?μM; MIC?=?0.48?μM) than the positive controls AHA (IC50?=?17.2?μM) and Metronidazole (MIC?=?31.3?μM). With low cytotoxicity, it showed considerable potential for further development. Docking simulation revealed the possible binding pattern of this series. 3D QSAR model was built to discuss SAR and give useful hints for future modification.  相似文献   

7.
Inhibition of MAO-B has been an effective strategy for the treatment of Parkinson’s disease. To find more potent and selective MAO-B inhibitors with novel chemical scaffold, we designed and synthesized a series of new 2,3-dihydro-1H-inden-1-amine derivatives on basis of our previous study. Furthermore, the corresponding structure-activity relationship (SAR) of these compounds is detailedly discussed. Compounds L4 (IC50?=?0.11?μM), L8 (IC50?=?0.18?μM), L16 (IC50?=?0.27?μM) and L17 (IC50?=?0.48?μM) showed similar MAO-B inhibitory activity as Selegiline. Moreover, L4, L16 and L17 also exhibited comparable selectivity with Selegiline, indicating that L4, L16 and L17 could be promising selective MAO-B inhibitors for further study.  相似文献   

8.
A series of 2,5-dihydroxyterephthalamide derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer’s disease. In vitro assays demonstrated that most of the derivatives exhibited good multifunctional activities. Among them, compound 9d showed the best inhibitory activity against both RatAChE and EeAChE (IC50?=?0.56?μM and 5.12?μM, respectively). Moreover, 9d exhibited excellent inhibitory effects on self-induced Aβ1–42 aggregation (IC50?=?3.05?μM) and Cu2+-induced Aβ1–42 aggregation (71.7% at 25.0?μM), and displayed significant disaggregation ability to self- and Cu2+-induced Aβ1–42 aggregation fibrils (75.2% and 77.2% at 25.0?μM, respectively). Furthermore, 9d also showed biometal chelating abilities, antioxidant activity, anti-neuroinflammatory activities and appropriate BBB permeability. These multifunctional properties highlight 9d as promising candidate for further studies directed to the development of novel drugs against AD.  相似文献   

9.
Thirty-six of novel compounds 2-substituted-1-(2-morpholinoethyl)-1H-naphtho[2,3-d]imidazole-4,9-diones, bearing a N-(2-morpholinoethyl) group and a 2-substituted imidazole segment on a naphthoquinone skeleton, were designed, synthesized and tested as anticancer agents. Cytotoxicity was evaluated in vitro against three human cancer cell lines: human breast carcinoma cell line (MCF-7), human cervical carcinoma cell line (Hela), and human lung carcinoma cell line (A549); and one normal cell line: mouse fibroblast cell line (L929). Among them, the compound 2-(3-chloro-4-methoxyphenyl)-1-(2-morpholinoethyl)-1H-naphtho[2,3-d]imidazole-4,9-dione showed good antiproliferative activity against MCF-7, Hela and A549 (IC50 values are equal to 10.6?μM, 8.3?μM and 4.3?μM respectively) and low cytotoxicity to L929 (IC50 value is equal to 67.3?μM).  相似文献   

10.
A novel series of acridine-chromenone and quinoline-chromenone hybrids were designed, synthesized, and evaluated as anti-Alzheimer’s agents. All synthesized compounds were evaluated as cholinesterases (ChEs) inhibitors and among them, 7-(4-(6-chloro-2,3-dihydro-1H-cyclopenta[b]quinolin-9-ylamino)phenoxy)-4-methyl-2H-chromen-2-one (8e) exhibited the most potent anti-acetylcholinesterase (AChE) inhibitory activity (IC50 = 16.17 μM) comparing with rivastigmine (IC50 = 11.07 μM) as the reference drug. Also, compound 8e was assessed for its β-secretase (BACE1) inhibitory and neuroprotective activities which demonstrated satisfactory results. It should be noted that both kinetic study on the inhibition of AChE and molecular modeling revealed that compound 8e interacted simultaneously with both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE.  相似文献   

11.
A series of N-(2-(1H-imidazol-1-yl)-2-phenylethyl)arylamides were prepared, using an efficient three- to five-step synthesis, and evaluated for their inhibitory activity against human cytochrome P450C24A1 (CYP24A1) hydroxylase. Inhibition ranged from IC50 0.3–72 μM compared with the standard ketoconazole IC50 0.52 μM, with the styryl derivative (11c) displaying enhanced activity (IC50 = 0.3 μM) compared with the standard, providing a useful preliminary lead for drug development.  相似文献   

12.
A series of derivatives of Matijing-Su (MTS, N-(N-benzoyl-l-phenylalanyl)-O-acetyl-l-phenylalanol) was synthesized and evaluated for their anti-hepatitis B virus (HBV) activities in 2.2.15 cells. The IC50 of compounds 9c (1.40 μM), 9g (2.33 μM) and 9n (2.36 μM), etc. and the selective index of 9n (45.93) of the inhibition on the replication of HBV DNA were higher than those of the positive control lamivudine [41.59, (IC50: 82.42 μM)]. Compounds 11d, 12a and 12e also exhibited significant anti-HBV activities.  相似文献   

13.
Discovering multifunctional agents for the treatment of Alzheimer’s disease (AD) is an attractive therapeutic approach. BACE1 (β-site amyloid precursor protein cleaving enzyme 1) inhibitors may play a pivotal role in treating AD. Therefore, the discovery of novel non-peptide BACE1 inhibitors with desirable blood brain barrier permeability is a favorable approach for treatment. Moreover, the antioxidant potential of a drug could serve as an added value for designing dual-acting therapeutic agents. Here, we report the design, synthesis and biological evaluation of quinazolinone-hydrazone derivatives as new multi-target candidates for the treatment of AD. The compounds were investigated for their in vitro BACE1 inhibitory potential using a FRET-based enzymatic assay and also screened for antioxidant activity using DPPH. Among them, compound 4h bearing a 2,3-dichlorophenyl moiety showed the highest activity with an IC50 value of 3.7 μM against BACE1. In addition, compound 4i with a 2,4-dihydroxyphenyl scaffold demonstrated moderate BACE1 inhibitory activity (IC50 = 27.6 μM) with a significant antioxidant effect (IC50 = 8.4 μM). Furthermore, docking studies revealed strong interaction between compound 4h and the key residues of BACE1 active site. These results demonstrate that quinazolinone-hydrazone derivatives represent a valuable scaffold for the discovery of novel non-peptidic BACE1 inhibitors.  相似文献   

14.
In the present study, a series of fourteen 2-mercapto-4(3H)-quinazolinone derivatives was synthesised and evaluated as potential inhibitors of the human monoamine oxidase (MAO) enzymes. Quinazolinone is the oxidised form of quinazoline, and although this class has not yet been extensively explored as MAO inhibitors, it has been shown to possess a wide variety of biological activities. Among the quinazolinone derivatives investigated, seven compounds (IC50?<?1?µM) proved to be potent and specific MAO-B inhibitors, with the most potent inhibitor, 2-[(3-iodobenzyl)thio]quinazolin-4(3H)-one, exhibiting an IC50 value of 0.142?μM. Further investigation showed that this inhibitor is a reversible and competitive inhibitor of MAO-B with a Ki value of 0.068?µM. None of the test compounds were MAO-A inhibitors. Analysis of the structure-activity relationships (SARs) for MAO-B inhibition shows that substitution on the C2 position of quinazolinone with a benzylthio moiety bearing a Cl, Br or I on the meta position yields the most potent inhibitors of the series. In contrast, substitution with the unsubstituted benzylthio moiety (IC50?=?3.03?µM) resulted in significantly weaker inhibition activity towards MAO-B. This study suggests that quinazolinones are promising leads for the development of selective MAO-B inhibitors which may be used for the treatment of neurodegenerative disorders such as Parkinson’s disease.  相似文献   

15.
Inhibition of microtubule function using tubulin targeting agents has received growing attention in the last several decades. The indole scaffold has been recognized as an important scaffold in the design of novel compounds acting as antimitotic agents. Indole-based chalcones, in which one of the aryl rings was replaced by an indole, have been explored in the last few years for their anticancer potential in different cancer cell lines. Eighteen novel (3′,4′,5′-trimethoxyphenyl)-indolyl-propenone derivatives with general structure 9 were synthesized and evaluated for their antiproliferative activity against a panel of four different human cancer cell lines. The highest IC50 values were obtained against the human promyelocytic leukemia HL-60 cell line. This series of chalcone derivatives was characterized by the presence of a 2-alkoxycarbonyl indole ring as the second aryl system attached at the carbonyl of the 3-position of the 1-(3′,4′,5′-trimethoxyphenyl)-2-propen-1-one framework. The structure–activity relationship (SAR) of the indole-based chalcone derivatives was investigated by varying the position of the methoxy group, by the introduction of different substituents (hydrogen, methyl, ethyl or benzyl) at the N-1 position and by the activity differences between methoxycarbonyl and ethoxycarbonyl moieties at the 2-position of the indole nucleus. The antiproliferative activity data of the novel synthesized compounds revealed that generally N-substituted indole analogues exhibited considerably reduced potency as compared with their parent N-unsubstituted counterparts, demonstrating that the presence of a hydrogen on the indole nitrogen plays a decisive role in increasing antiproliferative activity. The results also revealed that the position of the methoxy group on the indole ring is a critical determinant of biological activity. Among the synthesized derivatives, compound 9e, containing the 2-methoxycarbonyl-6-methoxy-N-1H-indole moiety exhibited the highest antiproliferative activity, with IC50 values of 0.37, 0.16 and 0.17?μM against HeLa, HT29 and MCF-7 cancer cell lines, respectively, and with considerably lower activity against HL-60 cells (IC50: 18?μM). This derivative also displayed cytotoxic properties (IC50 values ~1?μM) in the human myeloid leukemia U-937 cell line overexpressing human Bcl-2 (U-937/Bcl-2) via cell cycle progression arrest at the G2-M phase and induction of apoptosis. The results obtained also demonstrated that the antiproliferative activity of this molecule is related to inhibition of tubulin polymerisation. The presence of a methoxy group at the C5- or C6-position of the indole nucleus, as well as the absence of substituents at the N-1-indole position, contributed to the optimal activity of the indole-propenone-3′,4′,5′-trimethoxyphenyl scaffold.  相似文献   

16.
A series of rhodanine derivatives RB1–RB23 were synthesized through a two-round screening. Their Mycobacterial tuberculosis (Mtb) InhA inhibitory activity and Mtb growth blocking capability were evaluated. The most potent hit compound RB23 indicated comparable InhA inhibiton (IC50?=?2.55?μM) with the positive control Triclosan (IC50?=?6.14?μM) and Isoniazid (IC50?=?8.29?μM). Its improved growth-blocking effect on Mtb and low toxicity were attractive for further development. The docking simulation revealed the possible binding pattern of this series and picked the key interacted residues as Ser20, Phe149, Lys165 and Thr196. The 3D-QSAR model visualized the SAR discussion and hinted new information. Modifying the surroundings near rhodanine moiety might be promising attempts in later investigations.  相似文献   

17.
Fibroblast growth factor receptor 1 (FGFR1) plays an important role in tumorigenesis and is therefore an attractive target for anticancer therapy. Using molecular docking approach we have identified inhibitor of FGFR1 belonging to 5-amino-4-(1H-benzoimidazol-2-yl)-phenyl-1,2-dihydro-pyrrol-3-ones with IC50 value of 3.5 μM. A series of derivatives of this chemical scaffold has been synthesized and evaluated for inhibition of FGFR1 kinase activity. It was revealed that the most promising compounds 5-amino-1-(3-hydroxy-phenyl)-4-(6-methyl-1H-benzoimidazol-2-yl)-1,2-dihydro-pyrrol-3-one and 5-amino-4-(1H-benzoimidazol-2-yl)-1-(3-hydroxy-phenyl)-1,2-dihydro-pyrrol-3-one inhibit FGFR1 with IC50 values of 0.63 and 0.32 μM, respectively, and posses antiproliferative activity against KG1 myeloma cell line with IC50 values of 5.6 and 9.3 μM. Structure–activity relationships have been studied and binding mode of this chemical class has been proposed.  相似文献   

18.
A novel series of N-aryl-N′-pyrimidin-4-yl ureas has been optimized to afford potent and selective inhibitors of the EGFR L858R/T790M. The most representative compound 28 showed high activity against EGFR L858R/T790M kinase (IC50?=?4?nM) and 22-fold selectivity against wild type EGFR. Moreover, compound 28 potently inhibited EGFR L858R/T790M phosphorylation (IC50?=?41?nM) and cellular proliferation (IC50?=?37?nM) in the H1975 cell line, while being significantly less toxic to A431 cells. Further, compound 28 exhibited a great selectivity in a mini-panel of kinases.  相似文献   

19.
In our ongoing effort of discovering anticancer and chemopreventive agents, a series of 2-arylindole derivatives were synthesized and evaluated toward aromatase and quinone reductase 1 (QR1). Biological evaluation revealed that several compounds (e.g., 2d, IC50?=?1.61?μM; 21, IC50?=?3.05?μM; and 27, IC50?=?3.34?μM) showed aromatase inhibitory activity with half maximal inhibitory concentration (IC50) values in the low micromolar concentrations. With regard to the QR1 induction activity, 11 exhibited the highest QR1 induction ratio (IR) with a low concentration to double activity (CD) value (IR?=?8.34, CD?=?2.75?μM), while 7 showed the most potent CD value of 1.12?μM. A dual acting compound 24 showed aromatase inhibition (IC50?=?9.00?μM) as well as QR1 induction (CD?=?5.76?μM) activities. Computational docking studies using CDOCKER (Discovery Studio 3.5) provided insight in regard to the potential binding modes of 2-arylindoles within the aromatase active site. Predominantly, the 2-arylindoles preferred binding with the 2-aryl group toward a small hydrophobic pocket within the active site. The C-5 electron withdrawing group on indole was predicted to have an important role and formed a hydrogen bond with Ser478 (OH). Alternatively, meta-pyridyl analogs may orient with the pyridyl 3′-nitrogen coordinating with the heme group.  相似文献   

20.
A novel series of 4-methyl substituted pyrazole derivatives were designed, synthesized and biologically evaluated as potent glucagon receptor (GCGR) antagonists. In this study, compounds 9q, 9r, 19d and 19e showed high GCGR binding (IC50?=?0.09?μM, 0.06?μM, 0.07?μM and 0.08?μM, respectively) and cyclic-adenosine monophosphate (cAMP) activities (IC50?=?0.22?μM, 0.26?μM, 0.44?μM and 0.46?μM, respectively) in cell-based assays. Most importantly, the docking experiment demonstrated that compound 9r formed extensive hydrophobic interactions with the receptor binding pocket, making it justifiable to further investigate the potential of becoming a GCGR antagonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号