首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 275 毫秒
1.
2.
We describe here the design, synthesis and biological evaluation of antiviral compounds acting against human rhinovirus (HRV). A series of aminothiazoles demonstrated pan-activity against the HRV genotypes screened and productive structure–activity relationships. A comprehensive investigational library was designed and performed allowing the identification of potent compounds with lower molecular weight and improved ADME profile. 31d-1, 31d-2, 31f showed good exposures in CD-1 mice. The mechanism of action was discovered to be a host target: the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIß). The identification of the pan-HRV active compound 31f combined with a structurally distinct literature compound T-00127-HEV1 allowed the assessment of target related tolerability of inhibiting this kinase for a short period of time in order to prevent HRV replication.  相似文献   

3.
A series of nine new N-substituted-4-((1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)amino)benzamides (6a-i) derivatives was synthesized. All the compounds were screened in-vitro for BSA anti-denaturation property, antioxidant assay and p38α MAP kinase inhibition. The in vitro anti-inflammatory assay results revealed that the compounds (6f-i) showed better activity than the compounds 6a-e. Compound 6f bearing the 4-chlorophenyl group showed in vitro anti-inflammatory activity (82.35 ± 4.04) comparable to standard drug diclofenac sodium (84.13 ± 1.63) and better p38α MAP kinase inhibitory activity (IC50 = 0.032 ± 1.63 µM) than the prototypic inhibitor SB203580 (IC50 = 0.041 ± 1.75 µM). The selected active compounds (6f-i) were further studied in animal models for anti-inflammatory activity, ulcerogenic liability, lipid peroxidation and TNF-α inhibition potential. Compound 6f showed promising anti-inflammatory potential with a percentage inhibition of 83.73% when compared to the standard, diclofenac sodium (78.05%). Compound 6f was also found to show reduced ulcerogenic liability and lipid peroxidation in comparison to the standard. This compound also potently inhibited the lipopolysaccharide (LPS)-induced TNF-α production in mice model (ID50 = 8.23 mg/kg) in comparison to SB 203580 (ID50 = 26.38 mg/kg). The molecular docking of compounds 6a-i against p38α MAP kinase receptor was also performed to understand ligand receptor interaction. Amongst all synthesized molecules compound 6f displayed highest docking score of −9.824. It showed hydrogen bonding interactions with Asn115 and pi-cation interaction with Lys53.  相似文献   

4.
Novel N-(benzothiazol/oxazol-2-yl)-2-[(5-(phenoxymethyl)-4-aryl-4H-1,2,4-triazol-3-yl)thio] acetamide derivatives (5a-n) were synthesized and investigated for in vitro anti-inflammatory activity and p38α MAP kinase inhibition. Compounds showing good in vitro activities (5a, 5b, 5d, 5e, 5i, 5k and 5l) were studied for their in vivo anti-inflammatory activity using carrageenan induced rat paw edema model. Compound 5b emerged as the most active compound with an edema inhibition of 84.43%. It also showed improved GI safety profile with lower ulcer severity index and lipid peroxidation potential. Also, p38α MAP kinase assay of 5b showed superior inhibitory potency (IC50:0.031 ± 0.14 µM) than the standard SB 203580 (IC50:0.043 ± 0.14 µM). To predict their binding mode compounds were also docked against p38α MAP kinase enzyme. Compound 5b and SB 203580 showed hinge region interaction with MET 109.  相似文献   

5.
Background: Protein kinase Cs are a family of enzymes that transduce the plethora of signals promoting lipid hydrolysis. Here, we show that protein kinase C must first be processed by three distinct phosphorylations before it is competent to respond to second messengers.Results We have identified the positions and functions of the in vivo phosphorylation sites of protein kinase C by mass spectrometry and peptide sequencing of native and phosphatase-treated kinase from the detergent-soluble fraction of cells. Specifically, the threonine at position 500 (T500) on the activation loop, and T641 and S660 on the carboxyl terminus of protein kinase C βII are phosphorylated in vivo. T500 and S660 are selectively dephosphorylated in vitro by protein phosphatase 2A to yield an enzyme that is still capable of lipid-dependent activation, whereas all three residues are dephosphorylated by protein phosphatase 1 to yield an inactive enzyme. Biochemical analysis reveals that protein kinase C autophosphorylates on S660, that autophosphorylation on S660 follows T641 autophosphorylation, that autophosphorylation on S660 is accompanied by the release of protein kinase C into the cytosol, and that T500 is not an autophosphorylation site.Conclusion Structural and biochemical analyses of native and phosphatase-treated protein kinase C indicate that protein kinase C is processed by three phosphorylations. Firstly, trans-phosphorylation on the activation loop (T500) renders it catalytically competent to autophosphorylate. Secondly, a subsequent autophosphorylation on the carboxyl terminus (T641) maintains catalytic competence. Thirdly, a second autophosphorylation on the carboxyl terminus (S660) regulates the enzyme's subcellular localization. The conservation of each of these residues (or an acidic residue) in conventional, novel and atypical protein kinase Cs underscores the essential role for each in regulating the protein kinase C family.  相似文献   

6.
Adenosine monophosphate-activated protein kinase (AMPK) has been considered as a promising drug target for its regulation in both glucose and lipid metabolism. Mogrol was originally identified from high throughput screening as a small molecule activator of AMPK subtype α2β1γ1. In order to enhance its potency on AMPK and summarize the structure-activity relationships, a series of mogrol derivatives were designed, synthesized and evaluated in pharmacological AMPK activation assays. The results showed that the amine derivatives at the 24-position can improve the potency. Among them, compounds 3 and 4 exhibited the best potency (EC50: 0.15 and 0.14 μM) which was 20 times more potent than mogrol (EC50: 3.0 μM).  相似文献   

7.
Lipid A is the active principal of gram negative bacterial lipopolysaccharide (LPS) in the activation of Toll-like receptor 4 (TLR4). Given the important role TLR4 plays in innate immunity and the development of adaptive immune responses, ligands that can modulate TLR4-mediated signaling have great therapeutic potential. Recently, we have reported a series of monophosphorylated lipid A mimics as potential ligands of TLR4, in which a diethanolamine moiety is employed to replace the reducing end (d-glucosamine). In this paper, we describe the synthesis of two further diethanolamine-containing lipid A mimics, 3 and 4, in an effort to mimic more closely the di-phosphate nature of natural lipid A. Both mimic 3, with an additional phosphate on the diethanolamine acyclic scaffold, and mimic 4, with a terminal carboxylic acid moiety as a phosphate bioisostere, serve to increase the potency of the immunostimulatory response induced, as measured by the induction of the cytokines TNF-α, IL-6, and IL-1β in the human monocytic cell line THP-1. In addition, mechanistic studies involving the known TLR4 antagonist lipid IVa confirm TLR4 as the target of the diethanolamine-containing lipid A mimics.  相似文献   

8.
Two new monoterpene acylglucosides (12) and one new aromatic glycoside (3), together with five known compounds (48), were isolated from 95% ethanol extract of Sibiraea angustata. The structures of these compounds were characterized by 2D-NMR and mass spectrometry. Compounds were evaluated for their hypolipidemic activity using oleic acid-induced lipid accumulation in HepG2 cells. RT-PCR analysis revealed that compound 5 could decrease the expression level of fatty acid synthase (FASN). Lipidomics analysis indicated that compound 5 significantly decreased the levels of 11 lipids in oleic acid-induced lipid accumulation, including triglycerides (TG), diglycerides (DG), phosphatidylcholines (PC) and 1-acyl-sn-glycero-3-phosphocholines (lysoPC). These data demonstrated that terpene acylglucosides are the major active constituents in Sibiraea angustata.  相似文献   

9.
《Phytomedicine》2014,21(1):15-19
In continuation of our drug discovery programme on Indian medicinal plants, we isolated an unusual amino acid, i.e. 2-amino-5-hydroxyhexanoic acid (1) from the seeds of Crotalaria juncea. The 2-amino-5-hydroxyhexanoic acid (1) showed dose dependent lipid lowering activity in the in vivo experiments and also showed good in vitro antioxidant activity. The cyclized compound, 3-amino-6-methyltetrahydro-2H-pyran-2-one (2) showed better lipid lowering and antioxidant profile than the parent compound 1.  相似文献   

10.
Bioactive oxazolopyridine unit was used in the synthesis of fluorescent markers for specific organelles in this paper. The compounds 1a-c are linked with double bond between oxazolopyridine ring and photogenic precursors (3a-c). Compound 1a showed higher fluorescence yield (0.86 in THF), compounds 1b-c showed larger stokes shifts in DMSO. In lipid vesicles environment, they also showed good optical properties. In addition, the three compounds are biomarkers with lower cytotoxicity. Among them, compound 1a based on oxazolopyridine and coumarin unit is a dual targetable fluorescent marker for mitochondria and lipid droplets; while the other two compounds 1b-c are only biomarkers for lipid droplets.  相似文献   

11.
In silico target fishing approach using PharmMapper server identified c-Met kinase as the selective target for our previously synthesized compound NCI 748494/1. This approach was validated by in vitro kinase assay which showed that NCI 748494/1 possessed promising inhibitory activity against c-Met kinase (IC50 = 31.70 μM). Assessment of ADMET profiling, drug-likeness, drug score as well as docking simulation for the binding pose of that compound in the active site of c-Met kinase domain revealed that NCI 748494/1 could be considered as a promising drug lead. Based on target identification and validation, it was observed that there is structure similarity between NCI 748494/1 and the reported type II c-Met kinase inhibitor BMS-777607. Optimization of our lead NCI 748494/1 furnished newly synthesized 1,2,4-triazine derivatives based on well-established structure-activity relationships, whereas three compounds namely; 4d, 7a and 8c displayed excellent in vitro cytotoxicity against three c-Met addicted cancer cell lines; A549 (lung adenocarcinoma), HT-29 (colon cancer) and MKN-45 (gastric carcinoma); with IC50 values in the range 0.01–1.86 µM. In vitro c-Met kinase assay showed 8c to possess the highest c-Met kinase inhibition profile (IC50 = 4.31 µM). Docking of the active compounds in c-Met kinase active site revealed strong binding interactions comparable to the lead NCI 748494/1 and BMS-777607, suggesting that c-Met inhibition is very likely to be the mechanism of the antitumor effect of these derivatives.  相似文献   

12.
Optimization of novel azetidine compounds, which we had found as colony stimulating factor-1 receptor (CSF-1R) Type II inhibitors, provided JTE-952 as a clinical candidate with high cellular activity (IC50?=?20?nM) and good pharmacokinetics profile. JTE-952 was also effective against a mouse collagen-induced model of arthritis (mouse CIA-model). Additionally, the X-ray co-crystal structure of JTE-952 with CSF-1R protein was shown to be a Type II inhibitor, and the kinase panel assay indicated that JTE-952 had high kinase selectivity.  相似文献   

13.
8-Amino-imidazo[1,5-a]pyrazine-based Bruton’s tyrosine kinase (BTK) inhibitors, such as 6, exhibited potent inhibition of BTK but required improvements in both kinase and hERG selectivity (Liu et al., 2016; Gao et al., 2017). In an effort to maintain the inhibitory activity of these analogs and improve their selectivity profiles, we carried out SAR exploration of groups at the 3-position of pyrazine compound 6. This effort led to the discovery of the morpholine group as an optimized pharmacophore. Compounds 13, 23 and 38 displayed excellent BTK potencies, kinase and hERG selectivities, and pharmacokinetic profiles.  相似文献   

14.
In silico virtual screening using the ligand-based ROCS approach and the commercially purchasable compound collection from the ZINC database resulted in the identification of distinctly different and novel acetamide core frameworks with series representatives 1a and 2a exhibiting nanomolar affinity in the kinase domain only hTrkA HTRF biochemical assay. Additional experimental validation using the Caliper technology with either the active or inactive kinase conditions demonstrated the leads, 1a and 2a, to preferentially bind the kinase inactive state. X-ray structural analysis of the kinase domain of hTrkA…1a/2a complexes confirmed the kinase, bind the inhibitor leads in the inactive state and to exhibit a type 2 binding mode with the DFG-out and αC-helix out conformation. The leads also demonstrated sub-micromolar activity in the full length hTrkA cell-based assay and selectivity against the closely related hTrkB isoform. However, the poor microsomal stability and permeability of the leads is suggestive of a multiparametric lead optimization effort requirement for further progression.  相似文献   

15.
Three xanthones, named cratoxylumxanthones B–D (13), along with five known xanthones (48), were isolated from the stems of Cratoxylum cochinchinense (Lour.) Blume. Their structures were elucidated by interpretation of spectroscopic data. Among these xanthones, cochinxanthone D (4) exhibited the most potent antioxidant activity in both the DPPH radical scavenging and the lipid peroxidation inhibition assays.  相似文献   

16.
We identified novel potent inhibitors of p38 MAP kinase using structure-based design strategy. X-ray crystallography showed that when p38 MAP kinase is complexed with TAK-715 (1) in a co-crystal structure, Phe169 adopts two conformations, where one interacts with 1 and the other shows no interaction with 1. Our structure-based design strategy shows that these two conformations converge into one via enhanced protein-ligand hydrophobic interactions. According to the strategy, we focused on scaffold transformation to identify imidazo[1,2-b]pyridazine derivatives as potent inhibitors of p38 MAP kinase. Among the herein described and evaluated compounds, N-oxide 16 exhibited potent inhibition of p38 MAP kinase and LPS-induced TNF-α production in human monocytic THP-1 cells, and significant in vivo efficacy in rat collagen-induced arthritis models. In this article, we report the discovery of potent, selective and orally bioavailable imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors with pyridine N-oxide group.  相似文献   

17.
The effects of 14 sesquiterpene hydroquinones, including 8 marine sponge-derived avarols (18) and 6 semisynthetic derivatives (914), on lipid droplet accumulation and neutral lipid synthesis in Chinese hamster ovary (CHO) K1 cells were investigated. In intact CHO-K1 cell assays, avarol (1) markedly decreased the number and size of lipid droplets in CHO-K1 cells and exhibited the most potent inhibitory activity on the synthesis of cholesteryl ester (CE) and triglyceride (TG) with IC50 values of 5.74 and 6.80 µM, respectively. In enzyme assays, sterol O-acyltransferase (SOAT), the final enzyme involved in CE biosynthesis, and diacylglycerol acyltransferase (DGAT), the final enzyme involved in TG biosynthesis, were inhibited by 1 with IC50 values of 7.31 and 20.0 µM, respectively, which correlated well with those obtained in the intact cell assay. These results strongly suggest that 1 inhibited SOAT and DGAT activities in CHO-K1 cells, leading to a reduction in the accumulation of CE and TG in lipid droplets.  相似文献   

18.
Novel pyrazole–benzimidazole derivatives have been designed and synthesized. The entire target compounds were determined against cancer cell lines U937, K562, A549, LoVo and HT29 and were screened for Aurora A/B kinase inhibitory activity in vitro. The compounds 7a, 7b, 7i, 7k and 7l demonstrated significant cancer cell lines and Aurora A/B kinase inhibitory activities. Molecular modeling studies suggested the derivatives have bound in the active site of Aurora A kinase through the formation of four hydrogen bonds. Quantum chemical studies were carried out on these compounds to understand the structural features essential for activity. The cellular activity of 7k was also tested by immunofluorescence.  相似文献   

19.
Protein kinases are important drug targets, especially in the area of oncology. This paper reports the synthesis and biological evaluation of new 7-azaindole derivatives bearing benzocycloalkanone motifs as potential protein kinase inhibitors. Four compounds 8g, 8h, 8i, and 8l were discovered to inhibit cyclin-dependent kinase 9 (CDK9/CyclinT) and/or Haspin kinase in the micromolar to nanomolar range. 8l was identified as the most potent Haspin inhibitor (IC50 = 14 nM), while 8g and 8h acted as dual inhibitors of CDK9/CyclinT and Haspin. These novel compounds constitute a promising starting point for the discovery of dual protein kinase inhibitors that have potential to be developed as anticancer agents, since both CDK9/CyclinT and Haspin are considered to be drug targets in oncology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号