首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ecological responses to climate change may depend on complex patterns of variability in weather and local microclimate that overlay global increases in mean temperature. Here, we show that high‐resolution temporal and spatial variability in temperature drives the dynamics of range expansion for an exemplar species, the butterfly Hesperia comma. Using fine‐resolution (5 m) models of vegetation surface microclimate, we estimate the thermal suitability of 906 habitat patches at the species' range margin for 27 years. Population and metapopulation models that incorporate this dynamic microclimate surface improve predictions of observed annual changes to population density and patch occupancy dynamics during the species' range expansion from 1982 to 2009. Our findings reveal how fine‐scale, short‐term environmental variability drives rates and patterns of range expansion through spatially localised, intermittent episodes of expansion and contraction. Incorporating dynamic microclimates can thus improve models of species range shifts at spatial and temporal scales relevant to conservation interventions.  相似文献   

2.
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition‐induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high‐emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually <20 km) that required to track the velocity of temperature change (usually more than 110 km over 100 years) under a high‐emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species' recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts.  相似文献   

3.
Criticism has been levelled at climate‐change‐induced forecasts of species range shifts that do not account explicitly for complex population dynamics. The relative importance of such dynamics under climate change is, however, undetermined because direct tests comparing the performance of demographic models vs. simpler ecological niche models are still lacking owing to difficulties in evaluating forecasts using real‐world data. We provide the first comparison of the skill of coupled ecological‐niche‐population models and ecological niche models in predicting documented shifts in the ranges of 20 British breeding bird species across a 40‐year period. Forecasts from models calibrated with data centred on 1970 were evaluated using data centred on 2010. We found that more complex coupled ecological‐niche‐population models (that account for dispersal and metapopulation dynamics) tend to have higher predictive accuracy in forecasting species range shifts than structurally simpler models that only account for variation in climate. However, these better forecasts are achieved only if ecological responses to climate change are simulated without static snapshots of historic land use, taken at a single point in time. In contrast, including both static land use and dynamic climate variables in simpler ecological niche models improve forecasts of observed range shifts. Despite being less skilful at predicting range changes at the grid‐cell level, ecological niche models do as well, or better, than more complex models at predicting the magnitude of relative change in range size. Therefore, ecological niche models can provide a reasonable first approximation of the magnitude of species' potential range shifts, especially when more detailed data are lacking on dispersal dynamics, demographic processes underpinning population performance, and change in land cover.  相似文献   

4.
Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range‐wide, spatially explicit climate change vulnerability assessment for Eastern Massasauga (Sistrurus catenatus), a declining endemic species in a region showing strong environmental change. Using active season and winter adult survival estimates derived from 17 data sets throughout the species' range, we identified demographic sensitivities to winter drought, maximum precipitation during the summer, and the proportion of the surrounding landscape dominated by agricultural and urban land cover. Each of these factors was negatively associated with active season adult survival rates in binomial generalized linear models. We then used these relationships to back‐cast adult survival with dynamic climate variables from 1950 to 2008 using spatially explicit demographic models. Demographic models for 189 population locations predicted known extant and extirpated populations well (AUC = 0.75), and models based on climate and land cover variables were superior to models incorporating either of those effects independently. These results suggest that increasing frequencies and severities of extreme events, including drought and flooding, have been important drivers of the long‐term spatiotemporal variation in a demographic rate. We provide evidence that this variation reflects nonadaptive sensitivity to climatic stressors, which are contributing to long‐term demographic decline and range contraction for a species of high‐conservation concern. Range‐wide demographic modeling facilitated an understanding of spatial shifts in climatic suitability and exposure, allowing the identification of important climate refugia for a dispersal‐limited species. Climate change vulnerability assessment provides a framework for linking demographic and distributional dynamics to environmental change, and can thereby provide unique information for conservation planning and management.  相似文献   

5.
Ongoing and predicted global change makes understanding and predicting species' range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process‐based simulations, and discuss how interspecific interactions can be more broadly represented in process‐based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.  相似文献   

6.
Previous theoretical studies suggest that a species' landscape should influence the evolution of its dispersal characteristics, because landscape structure affects the costs and benefits of dispersal. However, these studies have not considered the evolution of boundary crossing, that is, the tendency of animals to cross from habitat to nonhabitat (“matrix”). It is important to understand this dispersal behavior, because of its effects on the probability of population persistence. Boundary‐crossing behavior drives the rate of interaction with matrix, and thus, it influences the rate of movement among populations and the risk of dispersal mortality. We used an individual‐based, spatially explicit model to simulate the evolution of boundary crossing in response to landscape structure. Our simulations predict higher evolved probabilities of boundary crossing in landscapes with more habitat, less fragmented habitat, higher‐quality matrix, and more frequent disturbances (i.e., fewer generations between local population extinction events). Unexpectedly, our simulations also suggest that matrix quality and disturbance frequency have much stronger effects on the evolution of boundary crossing than either habitat amount or habitat fragmentation. Our results suggest that boundary‐crossing responses are most affected by the costs of dispersal through matrix and the benefits of escaping local extinction events. Evolution of optimal behavior at habitat boundaries in response to the landscape may have implications for species in human‐altered landscapes, because this behavior may become suboptimal if the landscape changes faster than the species' evolutionary response to that change. Understanding how matrix quality and habitat disturbance drive evolution of behavior at boundaries, and how this in turn influences the extinction risk of species in human‐altered landscapes should help us identify species of conservation concern and target them for management.  相似文献   

7.
Common ragweed (Ambrosia artemisiifolia L.) is an invasive, wind‐pollinated plant nearly ubiquitous in disturbed sites in its eastern North American native range and present across growing portions of Europe, Africa, Asia, and Australia. Phenotypic divergence between European and native‐range populations has been described as rapid evolution. However, a recent study demonstrated major human‐mediated shifts in ragweed genetic structure before introduction to Europe and suggested that native‐range genetic structure and local adaptation might fully explain accelerated growth and other invasive characteristics of introduced populations. Genomic differentiation that potentially influenced this structure has not yet been investigated, and it remains unclear whether substantial admixture during historical disturbance of the native range contributed to the development of invasiveness in introduced European ragweed populations. To investigate fine‐scale population genetic structure across the species' native range, we characterized diallelic SNP loci via a reduced‐representation genotyping‐by‐sequencing (GBS) approach. We corroborate phylogeographic domains previously discovered using traditional sequencing methods, while demonstrating increased power to resolve weak genetic structure in this highly admixed plant species. By identifying exome polymorphisms underlying genetic differentiation, we suggest that geographic differentiation of this important invasive species has occurred more often within pathways that regulate growth and response to defense and stress, which may be associated with survival in North America's diverse climatic regions.  相似文献   

8.
A species' genetic structure often varies in response to ecological and landscape processes that differ throughout the species' geographic range, yet landscape genetics studies are rarely spatially replicated. The Cope's giant salamander (Dicamptodon copei) is a neotenic, dispersal‐limited amphibian with a restricted geographic range in the Pacific northwestern USA. We investigated which landscape factors affect D. copei gene flow in three regions spanning the species' range, which vary in climate, landcover and degree of anthropogenic disturbance. Least cost paths and Circuitscape resistance analyses revealed that gene flow patterns vary across the species' range, with unique combinations of landscape variables affecting gene flow in different regions. Populations in the northern coastal portions of the range had relatively high gene flow, largely facilitated by stream and river networks. Near the southeastern edge of the species' range, gene flow was more restricted overall, with relatively less facilitation by streams and more limitation by heat load index and fragmented forest cover. These results suggested that the landscape is more difficult for individuals to disperse through at the southeastern edge of the species' range, with terrestrial habitat desiccation factors becoming more limiting to gene flow. We suggest that caution be used when attempting to extrapolate landscape genetic models and conservation measures from one portion of a species' range to another.  相似文献   

9.
We evaluated the restoration of native plant assemblages by topsoil translocation in the Hunter Valley, south‐east Australia. Species' responses were characterized by defining nine plant functional types (PFTs) based on combinations of four response mechanisms (seed bank persistence, germination cues, resprouting mechanisms, and longevity) through which species were predicted to persist or decline following translocation. The effects of community type and delay in topsoil restoration on restoration outcomes were tested in an orthogonal experiment. Changes in species' frequency were detected using Bayesian statistics with prior probabilities derived from pre‐clearing data. Few species failed to reestablish following translocation; these were offset by recruitment of other native species not detected prior to clearing. Compositional changes were more pronounced when topsoil was stockpiled (cf direct reinstatement), although there was no trend related to the period of stockpiling. The PFT response model correctly predicted the rank probability of decline in three of the nine PFTs, while a further three were correctly placed in the top ranks but in the incorrect order. Three PFTs were incorrectly ranked because the response model was incorrect. Resprouters declined more frequently than seeders; however, species with physical seed dormancy declined less frequently than those with either transient seed banks or physiological, morphological, or morpho‐physiological dormancy, irrespective of resprouting ability. Species with short juvenile periods were more likely to increase. We conclude that PFTs based on fire‐response traits represent a practical means of predicting species' responses to translocation and a basis for prioritizing species for supplementary planting.  相似文献   

10.
Aim To assess at a broad scale the vulnerability of Mediterranean vegetation to alien plant invasion under different climatic and disturbance scenarios. Location We simulated the vegetation biogeography and dynamics on five of the main islands of the Mediterranean Basin: Mallorca, Corsica, Sardinia, Crete and Lesvos. Methods We used LPJ‐GUESS, a generalized ecosystem model based on dynamic processes describing establishment, competition, mortality and ecosystem biogeochemistry. We simulated the vegetation distribution and dynamics using a set of plant functional types (PFTs) based on bioclimatic and physiological parameters, which included tree and shrub PFTs defined especially for the Mediterranean. Additionally, two invasive PFTs, an invasive tree type and an invasive herb type, were defined and used to estimate the vulnerability to invasion of a range of different ecosystems. The model was used to simulate climate changes and associated changes in atmospheric [CO2] to 2050 according to two SpecialReport on Emissions Scenarios climate scenarios (A1Fi and B1) combined with mean disturbance intervals of 3 and 40 years. Results The simulations and scenarios showed that the effect of climate change alone is likely to be negligible in many of the simulated ecosystems, although not all. The simulated progression of an invasion was highly dependent on the initial ecosystem composition and local environmental conditions, with a particular contrast between drier and wetter parts of the Mediterranean, and between mountain and coastal areas. The rate of ecosystem disturbance was the main factor controlling susceptibility to invasion, strongly influencing vegetation development on the shorter time scale. Main conclusions Further invasion into Mediterranean island ecosystems is likely to be an increasing problem: our simulations predict that, in the longer term, almost all the ecosystems will be dominated by exotic plants irrespective of disturbance rates.  相似文献   

11.
Climate change is causing range shifts in many marine species, with implications for biodiversity and fisheries. Previous research has mainly focused on how species' ranges will respond to changing ocean temperatures, without accounting for other environmental covariates that could affect future distribution patterns. Here, we integrate habitat suitability modeling approaches, a high‐resolution global climate model projection, and detailed fishery‐independent and ‐dependent faunal datasets from one of the most extensively monitored marine ecosystems—the U.S. Northeast Shelf. We project the responses of 125 species in this region to climate‐driven changes in multiple oceanographic factors (e.g., ocean temperature, salinity, sea surface height) and seabed characteristics (i.e., rugosity and depth). Comparing model outputs based on ocean temperature and seabed characteristics to those that also incorporated salinity and sea surface height (proxies for primary productivity and ocean circulation features), we explored how an emphasis on ocean temperature in projecting species' range shifts can impact assessments of species' climate vulnerability. We found that multifactor habitat suitability models performed better in explaining and predicting species historical distribution patterns than temperature‐based models. We also found that multifactor models provided more concerning assessments of species' future distribution patterns than temperature‐based models, projecting that species' ranges will largely shift northward and become more contracted and fragmented over time. Our results suggest that using ocean temperature as a primary determinant of range shifts can significantly alter projections, masking species' climate vulnerability, and potentially forestalling proactive management.  相似文献   

12.
  • 1 Advances in dynamic ecosystem modelling have made a number of different approaches to vegetation dynamics possible. Here we compare two models representing contrasting degrees of abstraction of the processes governing dynamics in real vegetation.
  • 2 Model (a) (GUESS) simulates explicitly growth and competition among individual plants. Differences in crown structure (height, depth, area and LAI) influence relative light uptake by neighbours. Assimilated carbon is allocated individually by each plant to its leaf, fine root and sapwood tissues. Carbon allocation and turnover of sapwood to heartwood in turn govern height and diameter growth.
  • 3 Model (b) (LPJ) incorporates a ‘dynamic global vegetation model’ (DGVM) architecture, simulating growth of populations of plant functional types (PFTs) over a grid cell, integrating individual‐level processes over the proportional area (foliar projective cover, FPC) occupied by each PFT. Individual plants are not simulated, but are replaced by explicit parameterizations of their growth and interactions.
  • 4 The models are identical in their representation of core physiological and biogeochemical processes. Both also use the same set of PFTs, corresponding to the major woody plant groups in Europe, plus a grass type.
  • 5 When applied at a range of locations, broadly spanning climatic variation within Europe, both models successfully predicted PFT composition and succession within modern natural vegetation. However, the individual‐based model performed better in areas where deciduous and evergreen types coincide, and in areas subject to pronounced seasonal water deficits, which would tend to favour grasses over drought‐intolerant trees.
  • 6 Differences in model performance could be traced to their treatment of individual‐level processes, in particular light competition and stress‐induced mortality.
  • 7 Our results suggest that an explicit individual‐based approach to vegetation dynamics may be an advantage in modelling of ecosystem structure and function at the resolution required for regional‐ to continental‐scale studies.
  相似文献   

13.
There is good evidence that species' distributions are shifting poleward in response to climate change and wide interest in the magnitude of such responses for scientific and conservation purposes. It has been suggested from the directions of climatic changes that species' distribution shifts may not be simply poleward, but this has been rarely tested with observed data. Here, we apply a novel approach to measuring range shifts on axes ranging through 360°, to recent data on the distributions of 122 species of British breeding birds during 1988–1991 and 2008–2011. Although previously documented poleward range shifts have continued, with an average 13.5 km shift northward, our analysis indicates this is an underestimate because it ignores common and larger shifts that occurred along axes oriented to the north‐west and north‐east. Trailing edges contracted from a broad range of southerly directions. Importantly, these results are derived from systematically collected data so confounding observer‐effort biases can be discounted. Analyses of climate for the same period show that whilst temperature trends should drive species along a north–north‐westerly trajectory, directional responses to precipitation will depend on both the time of year that is important for determining a species' distribution, and the location of the range margin. Directions of species' range centroid shift were not correlated with spatial trends in any single climate variable. We conclude that range shifts of British birds are multidirectional, individualistic and probably determined by species‐specific interactions of multiple climate factors. Climate change is predicted to lead to changes in community composition through variation in the rates that species' ranges shift; our results suggest communities could change further owing to constituent species shifting along different trajectories. We recommend more studies consider directionality in climate and range dynamics to produce more appropriate measures of observed and expected responses to climate change.  相似文献   

14.
Warming increases the spread of an invasive thistle   总被引:1,自引:0,他引:1  
Zhang R  Jongejans E  Shea K 《PloS one》2011,6(6):e21725

Background

Global warming and shifted precipitation regimes increasingly affect species abundances and distributions worldwide. Despite a large literature on species'' physiological, phenological, growth, and reproductive responses to such climate change, dispersal is rarely examined. Our study aims to test whether the dispersal ability of a non-native, wind-dispersed plant species is affected by climate change, and to quantify the ramifications for future invasion spread rates.

Methodology/Principal Findings

We experimentally increased temperature and precipitation in a two-cohort, factorial field study (n = 80). We found an overwhelming warming effect on plant life history: warming not only improved emergence, survival, and reproduction of the thistle Carduus nutans, but also elevated plant height, which increased seed dispersal distances. Using spatial population models, we demonstrate that these empirical warming effects on demographic vital rates, and dispersal parameters, greatly exacerbate spatial spread. Predicted levels of elevated winter precipitation decreased seed production per capitulum, but this only slightly offset the warming effect on spread. Using a spread rate decomposition technique (c*-LTRE), we also found that plant height-mediated changes in dispersal contribute most to increased spread rate under climate change.

Conclusions/Significance

We found that both dispersal and spread of this wind-dispersed plant species were strongly impacted by climate change. Dispersal responses to climate change can improve, or diminish, a species'' ability to track climate change spatially, and should not be overlooked. Methods that combine both demographic and dispersal responses thus will be an invaluable complement to projections of suitable habitat under climate change.  相似文献   

15.
We employ mitochondrial (mt) DNA markers to examine the matrilineal component of population genetic structure in the snow goose Chen caerulescens. From banding returns, it is known that females typically nest at their natal or prior nest site, whereas males pair with females on mixed wintering grounds and mediate considerable nuclear gene flow between geographically separate breeding colonies. Despite site philopatry documented for females, mtDNA markers show no clear distinctions between nesting populations across the species' range from Wrangel Island, USSR to Baffin Island in the eastern Canadian Arctic. Two major mtDNA clades (as well as rare haplotypes) are distributed widely and provide one of the few available examples of a phylogeographic pattern in which phylogenetic discontinuity in a gene tree exists without obvious geographic localization within a species' range. The major mtDNA clades may have differentiated in Pleistocene refugia, and colonized current nesting sites through recent range expansion via pulsed or continual low-level dispersal by females. The contrast between results of banding returns and mtDNA distributions in the snow goose raises general issues regarding population structure: direct contemporary observations on dispersal and gene flow can in some cases convey a misleading impression of phylogeographic population structure, because they fail to access the evolutionary component of population connectedness; conversely, geographic distributions of genetic markers can provide a misleading impression of contemporary dispersal and gene flow because they retain a record of evolutionary events and past demographic parameters that may differ from those of the present. An understanding of population structure requires integration of both evolutionary (genetic) and contemporary (direct observational) perspectives.  相似文献   

16.
The Lund–Potsdam–Jena Dynamic Global Vegetation Model (LPJ) combines process‐based, large‐scale representations of terrestrial vegetation dynamics and land‐atmosphere carbon and water exchanges in a modular framework. Features include feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these ‘fast’ processes and other ecosystem processes including resource competition, tissue turnover, population dynamics, soil organic matter and litter dynamics and fire disturbance. Ten plants functional types (PFTs) are differentiated by physiological, morphological, phenological, bioclimatic and fire‐response attributes. Resource competition and differential responses to fire between PFTs influence their relative fractional cover from year to year. Photosynthesis, evapotranspiration and soil water dynamics are modelled on a daily time step, while vegetation structure and PFT population densities are updated annually. Simulations have been made over the industrial period both for specific sites where field measurements were available for model evaluation, and globally on a 0.5°° × 0.5°° grid. Modelled vegetation patterns are consistent with observations, including remotely sensed vegetation structure and phenology. Seasonal cycles of net ecosystem exchange and soil moisture compare well with local measurements. Global carbon exchange fields used as input to an atmospheric tracer transport model (TM2) provided a good fit to observed seasonal cycles of CO2 concentration at all latitudes. Simulated inter‐annual variability of the global terrestrial carbon balance is in phase with and comparable in amplitude to observed variability in the growth rate of atmospheric CO2. Global terrestrial carbon and water cycle parameters (pool sizes and fluxes) lie within their accepted ranges. The model is being used to study past, present and future terrestrial ecosystem dynamics, biochemical and biophysical interactions between ecosystems and the atmosphere, and as a component of coupled Earth system models.  相似文献   

17.
Understanding the factors that determine rates of range expansion is not only crucial for developing risk assessment schemes and management strategies for invasive species, but also provides important insight into the ability of species to disperse in response to climate change. However, there is little knowledge on why some invasions spread faster than others at large spatiotemporal scales. Here, we examine the effects of human activities, species traits and characteristics of the invaded range on spread rates using a global sample of alien reptile and amphibian introductions. We show that spread rates vary remarkably among invaded locations within a species, and differ across biogeographical realms. Spread rates are positively related to the richness of native congeneric species and human‐assisted dispersal in the invaded range but are negatively correlated with topographic heterogeneity. Our findings highlight the importance of environmental characteristics and human‐assisted dispersal in developing robust frameworks for predicting species' range shifts.  相似文献   

18.
Seed dispersal links the end of a plant's reproductive cycle with the establishment of new recruits. Dispersal over short distances may lead to the local aggregation of individuals, slower population growth and, ultimately, to lower population densities. In this study, we analyse the demographic consequences for the shrub Daphne rodriguezii after the loss of its only seed disperser in an island ecosystem (Menorca Island, western Mediterranean). During a period of 8–10 years, we collected demographic data from five populations, four where the disperser is extinct (disrupted) and the only one in which it still persists (undisrupted). We calculated basic deterministic variables, analysed life table response experiments (LTRE) and their covariation among demographic traits, and simulated future population vulnerability. Population growth rate (λ) was either stable or negative and independent of whether the population was disrupted or not. Current and past population dynamics were similar in the two largest populations (one being the undisrupted), which suggests that the environmental conditions allow them to be stable regardless of seed disperser presence. Variation in λ was dependent on rainfall variability and was highly influenced by stasis and growth. There also existed tradeoffs between the former life traits and fecundity, which indicate strong competition when resources are limiting (e.g. high plant aggregation due to limited seed dispersal or low rainfall), and that could ultimately affect high‐elasticity demographic traits. Our study suggests that the population dynamic of D. rodriguezii is stable under the current conditions, and that where dispersal is limiting, important environmental changes (e.g. in habitat suitability and/or rainfall regime) might lead to local extinctions.  相似文献   

19.
Multiple pathways exist for species to respond to changing climates. However, responses of dispersal‐limited species will be more strongly tied to ability to adapt within existing populations as rates of environmental change will likely exceed movement rates. Here, we assess adaptive capacity in Plethodon cinereus, a dispersal‐limited woodland salamander. We quantify plasticity in behavior and variation in demography to observed variation in environmental variables over a 5‐year period. We found strong evidence that temperature and rainfall influence P. cinereus surface presence, indicating changes in climate are likely to affect seasonal activity patterns. We also found that warmer summer temperatures reduced individual growth rates into the autumn, which is likely to have negative demographic consequences. Reduced growth rates may delay reproductive maturity and lead to reductions in size‐specific fecundity, potentially reducing population‐level persistence. To better understand within‐population variability in responses, we examined differences between two common color morphs. Previous evidence suggests that the color polymorphism may be linked to physiological differences in heat and moisture tolerance. We found only moderate support for morph‐specific differences for the relationship between individual growth and temperature. Measuring environmental sensitivity to climatic variability is the first step in predicting species' responses to climate change. Our results suggest phenological shifts and changes in growth rates are likely responses under scenarios where further warming occurs, and we discuss possible adaptive strategies for resulting selective pressures.  相似文献   

20.
Question: Is demographic performance of Primula vulgaris correlated with habitat characteristics of the small landscape elements in which it occurs? Can we use this species as an indicator for species‐rich semi‐natural habitats? Location: Flanders, Belgium. Methods: To capture differences in demographic traits and habitat characteristics, both within and between populations, a two‐level survey was carried out. Population size and structure of 89 P. vulgaris populations in different types of small landscape elements was recorded in 1999. At plot level, densities of different life stages were determined and these were related to edaphic conditions and vegetation structure and composition. Results: Three different population types were distinguished: (1) dynamic populations, characterized by seedling and juvenile proportions, (2) normal populations with relatively more adults, but with considerable numbers of seedlings and juveniles and (3) senescent populations, mainly consisting of adults. Senescent populations were significantly smaller than populations with a dynamic demographic structure. At plot level, comparison of demographic characteristics between different management regimes revealed that recruitment rates and total plant density of P. vulgaris were highest in plots that received a regime that included mowing and clearing of ditch banks whereas densities were lower along forest edges. For these plots, it was shown that nutrient levels were higher. Densities of adults as well as juvenile and seedling densities were negatively correlated with vegetation height. Conclusions: Local disturbance and heterogeneity may mask the relationship between unfavourable conditions and demographic characteristics at population level, but it is clear that in small populations recruitment needs to be lifted to guarantee its persistence. Performance of P. vulgaris in small landscape elements can be a first indication of plant species diversity in small landscape elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号