共查询到20条相似文献,搜索用时 0 毫秒
1.
Social interactions among individuals are widespread, both in natural and domestic populations. As a result, trait values of individuals may be affected by genes in other individuals, a phenomenon known as indirect genetic effects (IGEs). IGEs can be estimated using linear mixed models. The traditional IGE model assumes that an individual interacts equally with all its partners, whether kin or strangers. There is abundant evidence, however, that individuals behave differently towards kin as compared with strangers, which agrees with predictions from kin-selection theory. With a mix of kin and strangers, therefore, IGEs estimated from a traditional model may be incorrect, and selection based on those estimates will be suboptimal. Here we investigate whether genetic parameters for IGEs are statistically identifiable in group-structured populations when IGEs differ between kin and strangers, and develop models to estimate such parameters. First, we extend the definition of total breeding value and total heritable variance to cases where IGEs depend on relatedness. Next, we show that the full set of genetic parameters is not identifiable when IGEs differ between kin and strangers. Subsequently, we present a reduced model that yields estimates of the total heritable effects on kin, on non-kin and on all social partners of an individual, as well as the total heritable variance for response to selection. Finally we discuss the consequences of analysing data in which IGEs depend on relatedness using a traditional IGE model, and investigate group structures that may allow estimation of the full set of genetic parameters when IGEs depend on kin. 相似文献
2.
Joel W. McGlothlin Jason B. Wolf Edmund D. Brodie III Allen J. Moore 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1642)
Hamilton''s theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton''s perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton''s rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton''s rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton''s rule. Research in social evolution has generated an extensive body of empirical work focusing—with good reason—almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution. 相似文献
3.
Jason B. Wolf Edmund D. Brodie 《Evolution; international journal of organic evolution》1998,52(2):299-308
Parents often have important influences on their offspring's traits and/or fitness (i.e., maternal or paternal effects). When offspring fitness is determined by the joint influences of offspring and parental traits, selection may favor particular combinations that generate high offspring fitness. We show that this epistasis for fitness between the parental and offspring genotypes can result in the evolution of their joint distribution, generating genetic correlations between the parental and offspring characters. This phenomenon can be viewed as a coadaptive process in which offspring genotypes evolve to function with the parentally provided environment and, in turn, the genes for this environment become associated with specific offspring genes adapted to it. To illustrate this point, we present two scenarios in which selection on offspring alone alters the correlation between a maternal and an offspring character. We use a quantitative genetic maternal effect model combined with a simple quadratic model of fitness to examine changes in the linkage disequilibrium between the maternal and offspring genotypes. In the first scenario, stabilizing selection on a maternally affected offspring character results in a genetic correlation that is opposite in sign to the maternal effect. In the second scenario, directional selection on an offspring trait that shows a nonadditive maternal effect can result in selection for positive covariances between the traits. This form of selection also results in increased genetic variation in maternal and offspring characters, and may, in the extreme case, promote host-race formation or speciation. This model provides a possible evolutionary explanation for the ubiquity of large genetic correlations between maternal and offspring traits, and suggests that this pattern of coinheritance may reflect functional relationships between these characters (i.e., functional integration). 相似文献
4.
Michael J. Wade Piter Bijma Esther D. Ellen William Muir 《Evolutionary Applications》2010,3(5-6):453-465
Social interactions, especially those involving competition among individuals, are important in domesticated livestock and in natural populations. The heritability of traits affected by such interactions has two components, one originating in the individual like that of classical traits (direct effects) and the other originating in other group members (indirect effects). The latter type of trait represents a significant source of ‘hidden heritability’ and it requires population structure and knowledge from relatives in order to access it for selective breeding. When ignored, competitive interactions may increase as an indirect response to direct selection, resulting in diminished yields. We illustrate how population genetic structure affects the response to selection of traits with indirect genetic effects using population genetic and quantitative genetic theory. Population genetic theory permits us to connect our results to the existing body of theory on kin and group selection in natural populations. The quantitative genetic perspective allows us to see how breeders have used knowledge from relatives and family selection in the domestication of plants and animals to improve the welfare and production of livestock by incorporating social genetic effects in the breeding program. We illustrate the central features of these models by reviewing empirical studies from domesticated chickens. 相似文献
5.
Frank SA 《Evolution; international journal of organic evolution》2003,57(4):693-705
Abstract Repression of competition within groups joins kin selection as the second major force in the history of life shaping the evolution of cooperation. When opportunities for competition against neighbors are limited within groups, individuals can increase their own success only by enhancing the efficiency and productivity of their group. Thus, characters that repress competition within groups promote cooperation and enhance group success. Leigh first expressed this idea in the context of fair meiosis, in which each chromosome has an equal chance of transmission via gametes. Randomized success means that each part of the genome can increase its own success only by enhancing the total number of progeny and thus increasing the success of the group. Alexander used this insight about repression of competition in fair meiosis to develop his theories for the evolution of human sociality. Alexander argued that human social structures spread when they repress competition within groups and promote successful group-against-group competition. Buss introduced a new example with his suggestion that metazoan success depended on repression of competition between cellular lineages. Maynard Smith synthesized different lines of thought on repression of competition. In this paper, I develop simple mathematical models to illustrate the main processes by which repression of competition evolves. With the concepts made clear, I then explain the history of the idea. I finish by summarizing many new developments in this subject and the most promising lines for future study. 相似文献
6.
7.
Linksvayer TA 《Evolution; international journal of organic evolution》2006,60(12):2552-2561
When social interactions occur, the phenotype of an individual is influenced directly by its own genes (direct genetic effects) but also indirectly by genes expressed in social partners (indirect genetic effects). Social insect colonies are characterized by extensive behavioral interactions among workers, brood, and queens so that indirect genetic effects are particularly relevant. I used a series of experimental manipulations to disentangle the contribution of direct effects, maternal (queen) effects, and sibsocial (worker) effects to variation for worker, gyne, and male mass; caste ratio; and sex ratio in the ant Temnothorax curvispinosus. The results indicate genetic variance for direct, maternal, and sibsocial effects for all traits, except for male mass there was no significant maternal variance, and for sex ratio the variance for direct effects was not separable from maternal variance for the primary sex ratio. Estimates of genetic correlations between direct, maternal, and sibsocial effects were generally negative, indicating that these effects may not evolve independently. These results have broad implications for social insect evolution. For example, the genetic architecture underlying social insect traits may constrain the realization of evolutionary conflicts between social partners. 相似文献
8.
How does natural selection lead to cooperation between competing individuals? The Prisoner's Dilemma captures the essence of this problem. Two players can either cooperate or defect. The payoff for mutual cooperation, R, is greater than the payoff for mutual defection, P. But a defector versus a cooperator receives the highest payoff, T, where as the cooperator obtains the lowest payoff, S. Hence, the Prisoner's Dilemma is defined by the payoff ranking T > R > P > S . In a well‐mixed population, defectors always have a higher expected payoff than cooperators, and therefore natural selection favors defectors. The evolution of cooperation requires specific mechanisms. Here we discuss five mechanisms for the evolution of cooperation: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity (or graph selection). Each mechanism leads to a transformation of the Prisoner's Dilemma payoff matrix. From the transformed matrices, we derive the fundamental conditions for the evolution of cooperation. The transformed matrices can be used in standard frameworks of evolutionary dynamics such as the replicator equation or stochastic processes of game dynamics in finite populations. 相似文献
9.
Thomas A. Keaney Heidi W. S. Wong Damian K. Dowling Thersa M. Jones Luke Holman 《Journal of evolutionary biology》2020,33(2):189-201
Maternal inheritance of mitochondrial DNA (mtDNA) was originally thought to prevent any response to selection on male phenotypic variation attributable to mtDNA, resulting in a male‐biased mtDNA mutation load (“mother's curse”). However, the theory underpinning this claim implicitly assumes that a male's mtDNA has no effect on the fitness of females he comes into contact with. If such “mitochondrially encoded indirect genetics effects” (mtIGEs) do in fact exist, and there is relatedness between the mitochondrial genomes of interacting males and females, male mtDNA‐encoded traits can undergo adaptation after all. We tested this possibility using strains of Drosophila melanogaster that differ in their mtDNA. Our experiments indicate that female fitness is influenced by the mtDNA carried by males that the females encounter, which could plausibly allow the mitochondrial genome to evolve via kin selection. We argue that mtIGEs are probably common, and that this might ameliorate or exacerbate mother's curse. 相似文献
10.
Joan B. Silk 《International journal of primatology》2002,23(4):849-875
Altruism poses a problem for evolutionary biologists because natural selection is not expected to favor behaviors that are beneficial to recipients, but costly to actors. The theory of kin selection, first articulated by Hamilton (1964), provides a solution to the problem. Hamilton's well-known rule (br > c) provides a simple algorithm for the evolution of altruism via kin selection. Because kin recognition is a crucial requirement of kin selection, it is important to know whether and how primates can recognize their relatives. While conventional wisdom has been that primates can recognize maternal kin, but not paternal kin, this view is being challenged by new findings. The ability to recognize kin implies that kin selection may shape altruistic behavior in primate groups. I focus on two cases in which kin selection is tightly woven into the fabric of social life. For female baboons, macaques, and vervets maternal kinship is an important axis of social networks, coalitionary activity, and dominance relationships. Detailed studies of the patterning of altruistic interactions within these species illustrate the extent and limits of nepotism in their social lives. Carefully integrated analyses of behavior, demography, and genetics among red howlers provide an independent example of how kin selection shapes social organization and behavior. In red howlers, kin bonds shape the life histories and reproductive performance of both males and female. The two cases demonstrate that kin selection can be a powerful source of altruistic activity within primate groups. However, to fully assess the role of kin selection in primate groups, we need more information about the effects of kinship on the patterning of behavior across the Primates and accurate information about paternal kin relationships. 相似文献
11.
R. Fredrik Inglis Sam P. Brown Angus Buckling 《Evolution; international journal of organic evolution》2012,66(11):3472-3484
Social interactions have been shown to play an important role in bacterial evolution and virulence. The majority of empirical studies conducted have only considered social traits in isolation, yet numerous social traits, such as the production of spiteful bacteriocins (anticompetitor toxins) and iron‐scavenging siderophores (a public good) by the opportunistic pathogen Pseudomonas aeruginosa, are frequently expressed simultaneously. Crucially, both bacteriocin production and siderophore cheating can be favored under the same competitive conditions, and we develop theory and carry out experiments to determine how the success of a bacteriocin‐producing genotype is influenced by social cheating of susceptible competitors and the resultant impact on disease severity (virulence). Consistent with our theoretical predictions, we find that the spiteful genotype is favored at higher local frequencies when competing against public good cheats. Furthermore, the relationship between spite frequency and virulence is significantly altered when the spiteful genotype is competed against cheats compared with cooperators. These results confirm the ecological and evolutionary importance of considering multiple social traits simultaneously. Moreover, our results are consistent with recent theory regarding the invasion conditions for strong reciprocity (helping cooperators and harming noncooperators). 相似文献
12.
Teyssèdre A Couvet D Nunney L 《Evolution; international journal of organic evolution》2006,60(10):2023-2031
Abstract Hamilton's rule provides the foundation for understanding the genetic evolution of social behavior, showing that altruism is favored by increased relatedness and increased productivity of altruists. But how likely is it that a new altruistic mutation will satisfy Hamilton's rule by increasing the reproductive efficiency of the group? Altruism per se does not improve efficiency, and hence we would not expect a typical altruistic mutation to increase the mean productivity of the population. We examined the conditions under which a mutation causing reproductive altruism can spread when it does not increase productivity. We considered a population divided into temporary groups of genetically similar individuals (typically family groups). We show that the spread of altruism requires a pleiotropic link between altruism and enhanced productivity in diploid organisms, but not in haplodiploid organisms such as Hymenoptera. This result provides a novel biological understanding of the barrier to the spread of reproductive altruism in diploids. In haplodiploid organisms, altruism within families that lowers productivity may spread, provided daughters sacrifice their own reproduction to raise full‐sisters. We verified our results using three single‐locus genetic models that explore a range of the possible reproductive costs of helping. The advantage of female‐to‐female altruism in haplodiploids is a well‐known prediction of Hamilton's rule, but its importance in relaxing the linkage between altruism and efficiency has not been explored. We discuss the possible role of such unproductive altruism in the origins of sociality. We also note that each model predicts a large region of parameter space were polymorphism between altruism and selfishness is maintained, a pattern independent of dominance. 相似文献
13.
C. J. Goodnight 《Journal of evolutionary biology》2015,28(9):1734-1746
Gardner (2015) recently developed a model of a ‘Genetical Theory of Multilevel Selection, which is a thoughtfully developed, but flawed model. The model's flaws appear to be symptomatic of common misunderstandings of the multi level selection (MLS) literature and the recent quantitative genetic literature. I use Gardner's model as a guide for highlighting how the MLS literature can address the misconceptions found in his model, and the kin selection literature in general. I discuss research on the efficacy of group selection, the roll of indirect genetic effects in affecting the response to selection and the heritability of group‐level traits. I also discuss why the Price multilevel partition should not be used to partition MLS, and why contextual analysis and, by association, direct fitness are appropriate for partitioning MLS. Finally, I discuss conceptual issues around questions concerning the level at which fitness is measured, the units of selection, and I present a brief outline of a model of selection in class‐structured populations. I argue that the results derived from the MLS research tradition can inform kin selection research and models, and provide insights that will allow researchers to avoid conceptual flaws such as those seen in the Gardner model. 相似文献
14.
Michael J. Wade Yaniv Brandvain 《Evolution; international journal of organic evolution》2009,63(4):1084-1089
Many essential organelles and endosymbionts exhibit a strict matrilineal pattern of inheritance. The absence of paternal transmission of such extranuclear components is thought to preclude a response to selection on their effects on male viability and fertility. We overturn this dogma by showing that two mechanisms, inbreeding and kin selection, allow mitochondria to respond to selection on both male viability and fertility. Even modest levels of inbreeding allow such a response to selection when there are direct fitness effects of mitochondria on male fertility because inbreeding associates male fertility traits with mitochondrial matrilines. Male viability effects of mitochondria are also selectable whenever there are indirect fitness effects of males on the fitness of their sisters. When either of these effects is sufficiently strong, we show that there are conditions that allow the spread of mitochondria with direct effects that are harmful to females, contrary to standard expectation. We discuss the implications of our findings for the evolution of organelles and endosymbionts and genomic conflict. 相似文献
15.
Kin and levels-of-selection models are common approaches for modelling social evolution. Indirect genetic effect (IGE) models represent a different approach, specifying social effects on trait values rather than fitness. We investigate the joint effect of relatedness, multilevel selection and IGEs on response to selection. We present a measure for the degree of multilevel selection, which is the natural partner of relatedness in expressions for response. Response depends on both relatedness and the degree of multilevel selection, rather than only one or the other factor. Moreover, response is symmetric in relatedness and the degree of multilevel selection, indicating that both factors have exactly the same effect. Without IGEs, the key parameter is the product of relatedness and the degree of multilevel selection. With IGEs, however, multilevel selection without relatedness can explain evolution of social traits. Thus, next to relatedness and multilevel selection, IGEs are a key element in the genetical theory of social evolution. 相似文献
16.
N. H. Barton M. R. Servedio 《Evolution; international journal of organic evolution》2015,69(5):1101-1112
Evolutionary biologists have an array of powerful theoretical techniques that can accurately predict changes in the genetic composition of populations. Changes in gene frequencies and genetic associations between loci can be tracked as they respond to a wide variety of evolutionary forces. However, it is often less clear how to decompose these various forces into components that accurately reflect the underlying biology. Here, we present several issues that arise in the definition and interpretation of selection and selection coefficients, focusing on insights gained through the examination of selection coefficients in multilocus notation. Using this notation, we discuss how its flexibility—which allows different biological units to be identified as targets of selection—is reflected in the interpretation of the coefficients that the notation generates. In many situations, it can be difficult to agree on whether loci can be considered to be under “direct” versus “indirect” selection, or to quantify this selection. We present arguments for what the terms direct and indirect selection might best encompass, considering a range of issues, from viability and sexual selection to kin selection. We show how multilocus notation can discriminate between direct and indirect selection, and describe when it can do so. 相似文献
17.
John K. Kelly 《Evolution; international journal of organic evolution》1992,46(5):1492-1495
A suggestion that limited migration, i.e., population viscosity, should favor the evolution of altruism has been challenged by recent kin selection models explicitly incorporating restricted migration. It is demonstrated that these models compound two distinct elements of population structure, spatial-genotypic variation and density regulation. These two characteristics are often determined by distinct biological processes. While they may be linked under certain circumstances, this is not invariably true. A simple modification of the migration system employed in these studies decouples migration and population regulation thus favoring inter-group selection. At least in some cases, restricted migration will facilitate the evolution of altruism. 相似文献
18.
W. D. Hamilton famously suggested that the inflated relatedness of full sisters under haplodiploidy explains why all workers in the social hymenoptera are female. This suggestion has not stood up to further theoretical scrutiny and is not empirically supported. Rather, it appears that altruistic sib‐rearing in the social hymenoptera is performed exclusively by females because this behaviour has its origins in parental care, which was performed exclusively by females in the ancestors of this insect group. However, haplodiploidy might still explain the sex of workers if this mode of inheritance has itself been responsible for the rarity of paternal care in this group. Here, we perform a theoretical kin selection analysis to investigate the evolution of paternal care in diploid and haplodiploid populations. We find that haplodiploidy may either inhibit or promote paternal care depending on model assumptions, but that under the most plausible scenarios it promotes – rather than inhibits – paternal care. Our analysis casts further doubt upon there being a causal link between haplodiploidy and eusociality. 相似文献
19.
Timothy A. Linksvayer Michael J. Wade 《Evolution; international journal of organic evolution》2009,63(7):1685-1696
The equilibrium sequence diversity of genes within a population and the rate of sequence divergence between populations or species depends on a variety of factors, including expression pattern, mutation rate, nature of selection, random drift, and mating system. Here, we extend population genetic theory developed for maternal-effect genes to predict the equilibrium polymorphism within species and sequence divergence among species for genes with social effects on fitness. We show how the fitness effects of genes, mating system, and genetic system affect predicted gene polymorphism. We find that, because genes with indirect social effects on fitness effectively experience weaker selection, they are expected to harbor higher levels of polymorphism relative to genes with direct fitness effects. The relative increase in polymorphism is proportional to the inverse of the genetic relatedness between individuals expressing the gene and their social partners that experience the fitness effects of the gene. We find a similar pattern of more rapid divergence between populations or species for genes with indirect social effects relative to genes with direct effects. We focus our discussion on the social insects, organisms with diverse indirect genetic effects, mating and genetic systems, and we suggest specific examples for testing our predictions with emerging sociogenomic tools. 相似文献
20.
Claudia Kasper Ulrich Ernst Stefan Fischer Reinder Radersma Aura Raulo Filipa Cunha‐Saraiva Min Wu Barbara Taborsky 《Molecular ecology》2017,26(17):4364-4377
Despite essential progress towards understanding the evolution of cooperative behaviour, we still lack detailed knowledge about its underlying molecular mechanisms, genetic basis, evolutionary dynamics and ontogeny. An international workshop “Genetics and Development of Cooperation,” organized by the University of Bern (Switzerland), aimed at discussing the current progress in this research field and suggesting avenues for future research. This review uses the major themes of the meeting as a springboard to synthesize the concepts of genetic and nongenetic inheritance of cooperation, and to review a quantitative genetic framework that allows for the inclusion of indirect genetic effects. Furthermore, we argue that including nongenetic inheritance, such as transgenerational epigenetic effects, parental effects, ecological and cultural inheritance, provides a more nuanced view of the evolution of cooperation. We summarize those genes and molecular pathways in a range of species that seem promising candidates for mechanisms underlying cooperative behaviours. Concerning the neurobiological substrate of cooperation, we suggest three cognitive skills necessary for the ability to cooperate: (i) event memory, (ii) synchrony with others and (iii) responsiveness to others. Taking a closer look at the developmental trajectories that lead to the expression of cooperative behaviours, we discuss the dichotomy between early morphological specialization in social insects and more flexible behavioural specialization in cooperatively breeding vertebrates. Finally, we provide recommendations for which biological systems and species may be particularly suitable, which specific traits and parameters should be measured, what type of approaches should be followed, and which methods should be employed in studies of cooperation to better understand how cooperation evolves and manifests in nature. 相似文献