共查询到20条相似文献,搜索用时 15 毫秒
1.
Potential of the bean α‐amylase inhibitor αAI‐1 to inhibit α‐amylase activity in true bugs (Hemiptera) 下载免费PDF全文
C. Lüthi F. Álvarez‐Alfageme Y. Li S. E. Naranjo T. J. V. Higgins J. Romeis 《Journal of Applied Entomology》2015,139(3):192-200
True bugs (Hemiptera) are an important pest complex not controlled by Bt‐transgenic crops. An alternative source of resistance includes inhibitors of digestive enzymes, such as protease or amylase inhibitors. αAI‐1, an α‐amylase inhibitor from the common bean, inhibits gut‐associated α‐amylases of bruchid pests of grain legumes. Here we quantify the in vitro activity of α‐amylases of 12 hemipteran species from different taxonomic and functional groups and the in vitro inhibition of those α‐amylases by αAI‐1. α‐Amylase activity was detected in all species tested. However, susceptibility to αAI‐1 varied among the different groups. α‐Amylases of species in the Lygaeidae, Miridae and Nabidae were highly susceptible, whereas those in the Auchenorrhyncha (Cicadellidae, Membracidae) had a moderate susceptibility, and those in the Pentatomidae seemed to be tolerant to αAI‐1. The species with αAI‐1 susceptible α‐amylases represented families which include both important pest species but also predatory species. These findings suggest that αAI‐1‐expressing crops have potential to control true bugs in vivo. 相似文献
2.
Antidiabetic potential: in vitro inhibition effects of some natural phenolic compounds on α‐glycosidase and α‐amylase enzymes 下载免费PDF全文
α‐Glycosidase is a catalytic enzyme and it destroys the complex carbohydrates into simple absorbable sugar units. The natural phenolic compounds were tested for their antidiabetic properties as α‐glycosidase and α‐amylase inhibitors. The phenolic compounds investigated in this study have been used as antidiabetic common medicines. This paper aimed to consider their capability to inhibit α‐amylase and α‐glycosidase, two significant enzymes defined in serum glucose adjustment. These examination recorded impressive inhibition profiles with IC50 values in the range of 137.36–737.23 nM against α‐amylase and 29.01–157.96 nM against α‐glycosidase. 相似文献
3.
Synephrine and phenylephrine act as α‐amylase, α‐glycosidase,acetylcholinesterase, butyrylcholinesterase,and carbonic anhydrase enzymes inhibitors 下载免费PDF全文
Parham Taslimi Hülya Akıncıoglu İlhami Gülçin 《Journal of biochemical and molecular toxicology》2017,31(11)
In this paper, synephrine and phenylephrine compounds showed excellent inhibitory effects against human carbonic anhydrase (hCA) isoforms I and II, α‐amylase, α‐glycosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). Synephrine and phenylephrine had Ki values of 199.02 ± 16.01 and 65.01 ± 5.00 μM against hCA I and 336.02 ± 74.01 and 92.04 ± 18.03 μM against hCA II, respectively. On the other hand, their Ki values were found to be 169.10 ± 80.03 and 88.03 ± 5.01 nM against AChE and 177.06 ± 6.01 and 78.03 ± 3.05 nM against BChE, respectively. α‐Amylase and α‐glycosidase enzymes were easily inhibited by these compounds. α‐Glycosidase inhibitors, generally defined to as starch blockers, are anti‐diabetic drugs that help to decrease post comestible blood glucose levels. 相似文献
4.
Tomas Erban Michaela Erbanova Marta Nesvorna Jan Hubert 《Archives of insect biochemistry and physiology》2009,71(3):139-158
The adaptation of nine species of mites that infest stored products for starch utilization was tested by (1) enzymatic analysis using feces and whole mite extracts, (2) biotests, and (3) inhibition experiments. Acarus siro, Aleuroglyphus ovatus, and Tyroborus lini were associated with the starch‐type substrates and maltose, with higher enzymatic activities observed in whole mite extracts. Lepidoglyphus destructor was associated with the same substrates but had higher activities in feces. Dermatophagoides farinae, Chortoglyphus arcuatus, and Caloglyphus redickorzevi were associated with sucrose. Tyrophagus putrescentiae and Carpoglyphus lactis had low or intermediate enzymatic activity on the tested substrates. Biotests on starch additive diets showed accelerated growth of species associated with the starch‐type substrates. The inhibitor acarbose suppressed starch hydrolysis and growth of the mites. We suggest that the species with higher starch hydrolytic activity in feces were more tolerant to acarbose, and α‐amylase and α‐glucosidase of synanthropic mites are suitable targets for inhibitor‐based strategies of mite control. © 2009 Wiley Periodicals, Inc. 相似文献
5.
Jinyoung Son Misun Kim Ilo Jou Kyoung Chan Park Hee Young Kang 《Pigment cell & melanoma research》2014,27(2):201-208
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes. 相似文献
6.
DIGESTION IN ADULT FEMALES OF THE LEAF‐FOOTED BUG Leptoglossus zonatus (HEMIPTERA: COREIDAE) WITH EMPHASIS ON THE GLYCOSIDE HYDROLASES α‐AMYLASE, α‐GALACTOSIDASE,AND α‐GLUCOSIDASE 下载免费PDF全文
Ariane A. Rocha Carlos J. C. Pinto Richard I. Samuels Daniel Alexandre Carlos P. Silva 《Archives of insect biochemistry and physiology》2014,85(3):152-163
The leaffooted bug, Leptoglossus zonatus (Hemiptera: Coreidae) is an emerging pest of several crops around the World and up to now very little is known of its digestive system. In this article, glycoside hydrolase (carbohydrase) activities in the adult midgut cells and in the luminal contents of L. zonatus adult females were studied. The results showed the distribution of digestive carbohydrases in adults of this heteropteran species in the different intestinal compartments. Determination of the spatial distribution of α‐glucosidase activity in L. zonatus midgut showed only one major molecular form, which was not equally distributed between soluble and membrane‐bound isoforms, being more abundant as a membrane‐bound enzyme. The majority of digestive carbohydrases were found in the soluble fractions. Activities against starch, maltose and the synthetic substrate NPαGlu were found to show the highest levels of activity, followed by enzymes active against galactosyl oligosaccharides. Based on ion‐exchange chromatography elution profiles and banding patterns in mildly denaturing electrophoresis, both midgut α‐amylases and α‐galactosidases showed at least two isoforms. The data suggested that the majority of carbohydrases involved in initial digestion were present in the midgut lumen, whereas final digestion of starch and of galactosyl oligosaccharides takes place partially within the lumen and partially at the cell surface. The complex of carbohydrases here described was qualitatively appropriate for the digestion of free oligosaccharides and oligomaltodextrins released by α‐amylases acting on maize seed starch granules. 相似文献
7.
Engineering high α‐amylase levels in wheat grain lowers Falling Number but improves baking properties 下载免费PDF全文
Jean‐Philippe Ral Alex Whan Oscar Larroque Emmett Leyne Jeni Pritchard Anne‐Sophie Dielen Crispin A. Howitt Matthew K. Morell Marcus Newberry 《Plant biotechnology journal》2016,14(1):364-376
Late maturity α‐amylase (LMA) and preharvest sprouting (PHS) are genetic defects in wheat. They are both characterized by the expression of specific isoforms of α‐amylase in particular genotypes in the grain prior to harvest. The enhanced expression of α‐amylase in both LMA and PHS results in a reduction in Falling Number (FN), a test of gel viscosity, and subsequent downgrading of the grain, along with a reduced price for growers. The FN test is unable to distinguish between LMA and PHS; thus, both defects are treated similarly when grain is traded. However, in PHS‐affected grains, proteases and other degradative process are activated, and this has been shown to have a negative impact on end product quality. No studies have been conducted to determine whether LMA is detrimental to end product quality. This work demonstrated that wheat in which an isoform α‐amylase (TaAmy3) was overexpressed in the endosperm of developing grain to levels of up to 100‐fold higher than the wild‐type resulted in low FN similar to those seen in LMA‐ or PHS‐affected grains. This increase had no detrimental effect on starch structure, flour composition and enhanced baking quality, in small‐scale 10‐g baking tests. In these small‐scale tests, overexpression of TaAmy3 led to increased loaf volume and Maillard‐related browning to levels higher than those in control flours when baking improver was added. These findings raise questions as to the validity of the assumption that (i) LMA is detrimental to end product quality and (ii) a low FN is always indicative of a reduction in quality. This work suggests the need for a better understanding of the impact of elevated expression of specific α‐amylase on end product quality. 相似文献
8.
9.
Christian Starkenmann Fabienne Mayenzet Robert Brauchli Myriam Troccaz 《化学与生物多样性》2013,10(12):2197-2208
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide. 相似文献
10.
SIRT1 expression is refractory to hypoxia and inflammatory cytokines in nucleus pulposus cells: Novel regulation by HIF‐1α and NF‐κB signaling 下载免费PDF全文
Xiaofei Wang Hongjian Li Kang Xu Haipeng Zhu Yan Peng Anjing Liang Chunhai Li Dongsheng Huang Wei Ye 《Cell biology international》2016,40(6):716-726
11.
Yosuke Demizu Masakazu Tanaka Mitsunobu Doi Masaaki Kurihara Haruhiro Okuda Hiroshi Suemune 《Journal of peptide science》2010,16(11):621-626
A single chiral cyclic α,α‐disubstituted amino acid, (3S,4S)‐1‐amino‐(3,4‐dimethoxy)cyclopentanecarboxylic acid [(S,S)‐Ac5cdOM], was placed at the N‐terminal or C‐terminal positions of achiral α‐aminoisobutyric acid (Aib) peptide segments. The IR and 1H NMR spectra indicated that the dominant conformations of two peptides Cbz‐[(S,S)‐Ac5cdOM]‐(Aib)4‐OEt ( 1) and Cbz‐(Aib)4‐[(S,S)‐Ac5cdOM]‐OMe (2) in solution were helical structures. X‐ray crystallographic analysis of 1 and 2 revealed that a left‐handed (M) 310‐helical structure was present in 1 and that a right‐handed (P) 310‐helical structure was present in 2 in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
12.
Prostaglandin I2 upregulates the expression of anterior pharynx‐defective‐1α and anterior pharynx‐defective‐1β in amyloid precursor protein/presenilin 1 transgenic mice 下载免费PDF全文
Pu Wang Pei‐Pei Guan Jing‐Wen Guo Long‐Long Cao Guo‐Biao Xu Xin Yu Yue Wang Zhan‐You Wang 《Aging cell》2016,15(5):861-871
Cyclooxygenase‐2 (COX‐2) has been recently identified to be involved in the pathogenesis of Alzheimer's disease (AD). Yet, the role of an important COX‐2 metabolic product, prostaglandin (PG) I2, in the pathogenesis of AD remains unknown. Using human‐ and mouse‐derived neuronal cells as well as amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice as model systems, we elucidated the mechanism of anterior pharynx‐defective (APH)‐1α and pharynx‐defective‐1β induction. In particular, we found that PGI2 production increased during the course of AD development. Then, PGI2 accumulation in neuronal cells activates PKA/CREB and JNK/c‐Jun signaling pathways by phosphorylation, which results in APH‐1α/1β expression. As PGI2 is an important metabolic by‐product of COX‐2, its suppression by NS398 treatment decreases the expression of APH‐1α/1β in neuronal cells and APP/PS1 mice. More importantly, β‐amyloid protein (Aβ) oligomers in the cerebrospinal fluid (CSF) of APP/PS1 mice are critical for stimulating the expression of APH‐1α/1β, which was blocked by NS398 incubation. Finally, the induction of APH‐1α/1β was confirmed in the brains of patients with AD. Thus, these findings not only provide novel insights into the mechanism of PGI2‐induced AD progression but also are instrumental for improving clinical therapies to combat AD. 相似文献
13.
Long Liu Hyun‐dong Shin Rachel R. Chen Jianghua Li Guocheng Du Jian Chen 《Biotechnology progress》2013,29(1):39-47
An alkaline α‐amylase gene from alkaliphilic Alkalimonas amylolytica was synthesized based on the preferred codon usage of Escherichia coli and Pichia pastoris, respectively, and then was expressed in the according heterologous host, E. coli BL21 (DE3) and P. pastoris GS115. The alkaline α‐amylase expressed in E. coli was designated AmyA, whereas that produced by P. pastoris was designated AmyB. The specific activity of AmyA and AmyB was 16.0 and 16.6 U/mg at pH 9.5 and 50°C, respectively. The optimal pH and pH stability of AmyA and AmyB were similar, whereas the optimum temperature and thermal stability of AmyB were slightly enhanced compared with those of AmyA. The AmyA and AmyB had a similar melting temperature of 64°C and the same catalytic efficiency (kcat/Km) of 2.0 × 106 L/(mol min). AmyA and AmyB were slightly activated by 1 mM Co2+, Ca2+, or Na+, but inhibited by all other metal ions (K+, Mg2+, Fe3+, Fe2+, Zn2+, Mn2+, and Cu2+). Tween 80 or Tween 60 (10% (w/v)) had little influence on the stability of AmyA and AmyB, while the 10% (w/v) sodium dodecyl sulfate caused the complete loss of AmyA and AmyB activities. The AmyA and AmyB were stable in the presence of solid detergents (washing powder), while were less stable in liquid detergents. Under the optimal conditions in 3‐L bioreactor, the extracellular AmyB activity reached 600 U/mL, which was about 10 times as that of AmyA. These results indicated that P. pastoris was a preferable host for alkaline α‐amylase expression and the produced alkaline α‐amylase had a certain application potential in solid detergents. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013 相似文献
14.
15.
Synthesis of β‐Ketoamide Curcumin Analogs for Anti‐Diabetic and AGEs Inhibitory Activities 下载免费PDF全文
Govindharasu Banuppriya Rajendran Sribalan Sulthan Alavudeen Rizwan Fathima Vediappen Padmini 《化学与生物多样性》2018,15(8)
Two different series of novel β‐ketoamide curcumin analogs enriched in biological activities have been synthesized. The synthesized compounds were screened for their in vitro anti‐diabetic and AGEs inhibitory activities and exhibited potent to good anti‐diabetic and AGEs inhibitory activities. The molecular docking study was also performed with the α‐amylase enzyme. 相似文献
16.
Xiaohui Yu Baoyin Jia Faqiang Wang Xiuxiu Lv Xuemei Peng Yiyang Wang Hongmei Li Yanping Wang Daxiang Lu Huadong Wang 《Journal of cellular and molecular medicine》2014,18(2):263-273
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation. 相似文献
17.
Bárbara Lara‐Chacón Mario Bermúdez de León Daniel Leocadio Pablo Gómez Lizeth Fuentes‐Mera Ivette Martínez‐Vieyra Arturo Ortega David A. Jans Bulmaro Cisneros 《Journal of cellular biochemistry》2010,110(3):706-717
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
18.
Evaluation of In Vitro α‐Amylase and α‐Glucosidase Inhibitory Potentials of 14 Medicinal Plants Constituted in Thai Folk Antidiabetic Formularies 下载免费PDF全文
The sporadic increase in the occurrence and prevalence of diabetes mellitus have compelled and vigorous search for alternative anti‐diabetic therapeutic approach from medicinal plants and its bioactive. One of the major approach employed is the reduction of gastrointestinal glucose levels through the inhibition of carbohydrate digesting enzymes notably α‐amylase and α‐glucosidase. In this study, the ethanol extracts of 14 selected plants from Mor Porn's recipe were screened for their α‐amylase and α‐glucosidase inhibitory activity. The ethanolic extract from the stem of Vitex glabrata displayed the highest percentage inhibitory activity of 84.98 ± 0.59 and 84.71 ± 1.51 against α‐glucosidase and α‐amylase enzymes, respectively. Chemical investigation of the active extract of V. glabrata indicated that pentacyclic triterpenes were the major compounds responsible for the activity. The result obtained from this study suggests the potential use of V. glabrata as an alternative natural source for the treatment of diabetes mellitus. 相似文献
19.
Chiral sulfoxides/N‐oxides (R)‐ 1 and (R,R)‐ 2 are effective chiral promoters in the enantioselective allylation of α‐keto ester N‐benzoylhydrazone derivatives 3a , 3b , 3c , 3d , 3e , 3f , 3g to generate the corresponding N‐benzoylhydrazine derivatives 4a , 4b , 4c , 4d , 4e , 4f , 4g , with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a , 4b were subsequently treated with SmI2, and the resulting amino esters 5a , 5b with LiOH to obtain quaternary α‐substituted α‐allyl α‐amino acids 6a , 6b , whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. Chirality 25:529–540, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
20.
α‐Cyclodextrin was shown to be convenient chemical shift reagent for determination of the enantiomeric composition of α‐hydroxyphosphonic acids by means of 31P NMR. The developed methodology appeared to be reliable, repetitive, easy to perform and simple for interpretation. Enantiomeric discrimination in the 31P NMR spectra for 12 of 13 studied hydroxyphosphonates was achieved, with baseline separation of resonances obtained for eight compounds. In those cases, the chemical nonequivalence values ranged from 0.069 to 0.313 ppm. The studies showed that enantioselectivity is strongly influenced by the solution pD and the optimal condition was found at pD 2 or 10 depending on the guest structure. On the basis of the ROESY spectra the complexation modes of selected hydroxyphosphonates with α‐cyclodextrin was postulated. Chirality 2010. © 2009 Wiley‐Liss, Inc. 相似文献