首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Thanatin was first discovered from the hemipteran insect Podisus maculiventris and showed a promising antimicrobial activity. Multidrug-resistant (MDR) clinical isolates of Klebsiella pneumoniae have developed resistance to current therapies. As an attempt to resolve this problem, the efficacy of thanatin and its analogues against clinical isolates of K. pneumoniae was studied in vitro and in vivo. S-thanatin showed an improved antimicrobial activity with the tested MIC values was 2–8-fold lower than those of other thanatin analogs. Antimicrobial assay indicated a high activity of S-thanatin against K. pneumoniae in vitro with MIC between 4 and 8 μg/ml. Its in vivo activity was evaluated using a K. pneumoniae-infected mice model. Adult male ICR mice were randomly grouped and given an intraperitoneal (i.p.) administration of 2 × 1010 colony-forming units of K. pneumoniae (CI 120204205). Afterwards, mouse groups were subjected to i.p. administration of saline or S-thanatin (5, 10, or 15 mg/kg). After an inspection of 72 h, the mice were finally sacrificed for analysis of in vivo bacterial growth and plasma endotoxin level. The results showed that S-thanatin administration apparently improved the survival rate and reduced the bacterial CFU from intra-abdominal fluid in mice. The plasma endotoxin level was improved as well. All above implied that S-thanatin, as an alternative, may provide a novel strategy for treating K. pneumoniae infection and other infections due to multidrug-resistant bacteria.  相似文献   

2.
3-Hydroxypropionic acid (3-HP) can be produced from glycerol via two enzymatic reactions catalyzed by a coenzyme B12-dependent glycerol dehydratase (GDHt) and aldehyde dehydrogenase (ALDH) in Klebsiella pneumoniae. As the intracellular GDHt activity in K. pneumoniae is high, the overall rate of 3-HP production is controlled by the ALDH activity. To examine the effect of different ALDH activity on 3-HP production, three different ALDHs, AldH from Escherichia coli (EaldH), PuuC from K. pneumoniae (PuuC) and KGSADH from Azospirillum brasilense (KGSADH), were overexpressed and compared in various recombinant K. pneumoniae strains. In addition, the genes encoding DhaT and YqhD, which are responsible for the conversion of 3-hydroxypropionaldehyde (3-HPA) to 1,3-propanediol (1,3-PDO), were disrupted individually from K. pneumoniae to enhance the carbon flux from 3-HPA to 3-HP. When the ALDH activity was measured in various recombinant K. pneumoniae, KGSADH showed the highest crude cell activity of 8.0 U/mg protein, which was 2 and 4 times higher than that of PuuC and EaldH, respectively. The different ALDH activities had a significant effect on 3-HP production in a flask culture containing 100 mM glycerol, and K. pneumoniae ΔdhaT (KGSADH) resulted in the highest titer (64 mM) among the nine recombinant strains (three ALDH × three host strains; one wild type and two mutants). In glycerol fed-batch bioreactor cultivation, K. pneumoniae ΔdhaT (KGSADH) exhibited 3-HP production at >16 g/L in 48 h with a glycerol carbon yield of >40%. In comparison, K. pneumoniae ΔdhaT (PuuC) produced only 11 g/L 3-HP in 48 h with a yield of >23%. This study demonstrates that a high ALDH activity is essential for the effective production of 3-HP from glycerol with recombinant K. pneumoniae.  相似文献   

3.
The leaves of Dilobeia thouarsii (Roemer and Schulte), a tree that is endemic to Madagascar (Proteaceae), are used in traditional Malagasy medicine to treat bacterial skin infections and wounds. This study investigated the in vitro antibacterial activities of D. thouarsii leaf extracts and identified the bioactive compounds with the aim of providing a scientific basis for its use against skin diseases. Using broth microdilution method for leaf crude extract and its compounds, we investigated inhibition of the growth of Bacillus cereus, Bacillus megaterium, Staphylococcus aureus, Enterococcus faecalis, Vibrio harveyi, Vibrio fisheri, Salmonella Typhimurium, Salmonella antarctica, Escherichia coli, and Klebsiella pneumoniae. The two purified phenolic compounds from leaf ethyl acetate extracts (1, 2) were found to be more active than the crude extract itself. The structure of the two compounds was elucidated by NMR and mass spectrometry: compound 1 was identified as 4-aminophenol and compound 2 as 4-hydroxybenzaldehyde. A marked inhibitory effect (MIC < 0.1 mg/ml) was found against S. aureus, which is a major agent in skin infections. We observed moderate activities (MIC values of between 0.1 and 0.5 mg/ml) for E. faecalis, Vibrio spp., and Bacillus spp. Neither compound was active against Salmonella spp., E. coli and K. pneumoniae (MICs > 1 mg/ml). To conclude, the high antimicrobial activity of D. thouarsii leaf extracts against S. aureus supports its traditional use to treat skin infections.  相似文献   

4.
Effects of plant growth regulators (PGRs) and organic elicitors (OEs) on Coleonema pulchellum in vitro micropropagation, secondary product production and pharmacological activities were evaluated. In vitro, ex vitro and parental plants of C. pulchellum were investigated for their potential to produce phenolic and pharmacological compounds. Different morphogenic characteristics of shoots were obtained with PGRs- and OEs-containing media. A higher number of normal shoots were achieved with a low concentration of thidiazuron (TDZ: 4.5 μM). Lesser numbers were found with combinations of TDZ (13.6 μM) + indole-3-acetic acid (IAA: 2.9 μM); haemoglobin (HB: 300 mg l 1) or glutamine (GM: 40 μM) + benzyladenine (BA: 8.8 μM). Shoots were rooted in vitro and successfully acclimatized. Plant growth regulators and OEs had a significant effect on the synthesis and accumulation of phenolic compounds and flavonoids. In particular, casein hydrolysate (CH) as well as a combination of GM and BA induced high levels of total phenolics and flavonoids during in vitro culture. Cytokinins and OEs had a significant effect on DPPH radical scavenging and antibacterial activities of C. pulchellum extracts. Acclimatized C. pulchellum plants can be used as substitute alternative to natural populations.  相似文献   

5.
A number of geometrically-detailed passive finite element (FE) models of the lumbar spine have been developed and validated under in vitro loading conditions. These models are devoid of muscles and thus cannot be directly used to simulate in vivo loading conditions acting on the lumbar joint structures or spinal implants. Gravity loads and muscle forces estimated by a trunk musculoskeletal (MS) model under twelve static activities were applied to a passive FE model of the L4-L5 segment to estimate load sharing among the joint structures (disc, ligaments, and facets) under simulated in vivo loading conditions. An equivalent follower (FL), that generates IDP equal to that generated by muscle forces, was computed in each task. Results indicated that under in vivo loading conditions, the passive FE model predicted intradiscal pressures (IDPs) that closely matched those measured under the simulated tasks (R2 = 0.98 and root-mean-squared-error, RMSE = 0.18 MPa). The calculated equivalent FL compared well with the resultant force of all muscle forces and gravity loads acting on the L4-L5 segment (R2 = 0.99 and RMSE = 58 N). Therefore, as an alternative approach to represent in vivo loading conditions in passive FE model studies, this FL can be estimated by available in-house or commercial MS models. In clinical applications and design of implants, commonly considered in vitro loading conditions on the passive FE models do not adequately represent the in vivo loading conditions under muscle exertions. Therefore, more realistic in vivo loading conditions should instead be used.  相似文献   

6.
《Process Biochemistry》2014,49(1):25-32
The compound 1,2,4-butanetriol (BT) is a valuable chemical used in the production of plasticizers, polymers, cationic lipids and other medical applications, and is conventionally produced via hydrogenation of malate. In this report, BT is biosynthesized by an engineered Escherichia coli from d-xylose. The pathway: d-xylose  d-xylonate  2-keto-3-deoxy-d-xylonate  3,4-dihydroxybutanal  BT, was constructed in E. coli by recruiting a xylose dehydrogenase and a keto acid decarboxylase from Caulobacter crescentus and Pseudomonas putida, respectively. Authentic BT was detected from cultures of the engineered strain. Further improvement on the strain was performed by blocking the native d-xylose and d-xylonate metabolic pathways which involves disruption of xylAB, yjhH and yagE genes in the host chromosome. The final construct produced 0.88 g L−1 BT from 10 g L−1 d-xylose with a molar yield of 12.82%. By far, this is the first report on the direct production of BT from d-xylose by a single microbial host. This may serve as a starting point for further metabolic engineering works to increase the titer of BT toward industrial scale viability.  相似文献   

7.
AimTo report the long-term results of high-dose-rate (HDR) brachytherapy (BT) boost for breast cancer patients treated with conservative surgery and radiotherapy.Materials and methodsBetween 1995 and 2007, 100 early-stage breast cancer patients received an HDR BT boost after conservative surgery and whole breast irradiation. Ten patients (10%) received a single-fraction HDR boost of 8–10.35 Gy using rigid needles, while 90 (90%) were treated with a fractionated multi-catheter HDR BT boost. The latter consisted of 3 × 4 Gy (n = 19), 3 × 4.75 Gy (n = 70), and 2 × 6.4 Gy (n = 1). Breast cancer related events, cosmetic results and side effects were assessed.ResultsAt a median follow-up time of 94 months (range: 8–152) only 7 (7%) ipsilateral breast failures were observed for a 5- and 8-year actuarial rate of 4.5 and 7.0%, respectively. The 8-year disease-free, cancer-specific, and overall survival was 76.1, 82.8, and 80.4%, respectively. Cosmetic outcome was rated excellent in 17%, good in 39%, fair in 33%, and poor in 11%. Data on late radiation side effects were available for 91 patients (91%). Grade 3 fibrosis and grade 3 telangiectasia occurred in 6 (6.6%) and 2 (2.2%) patients, respectively. In univariate analysis only positive margin status had a significant negative effect on local control.ConclusionsHDR BT boost using multi-catheter implants produce excellent long-term local tumour control with acceptable cosmetic outcome and low rate of grade 3 late radiation side effects.  相似文献   

8.
Dietary trans-resveratrol (RES) is rapidly metabolized into sulfated and glucuronated conjugates in humans. This study focused on the in vitro determination of the antioxidant capacity of RES and its main physiological metabolites and on its relevance in vivo. In vitro, RES, RES-3-O-sulfate (R3S) and 3-O-glucuronide (R3G) showed antioxidant activities at a concentration of 1 mM when compared to Trolox using an assay in which the antioxidant inhibits iron-induced linoleic acid oxidation: 0.87±0.08 mM Trolox equivalents (TE) for RES, 0.52±0.01 mM TE for R3S and 0.36±0.02 mM TE for R3G. At a concentration of 1 μM, compounds promoted linoleic acid peroxidation (RES −0.30±0.09 mM TE, R3S −0.48±0.05 mM TE and R3G −0.57±0.07 mM TE). To elucidate whether these effects were reflected in vivo, total antioxidant capacity, reactive oxygen species (ROS), conjugated fatty acid dienes (CD), superoxide dismutase (SOD) and catalase (CAT) activities were determined in human plasma and erythrocytes over 24 h, after oral intake of either 0.05 g RES as piceid or 5 g RES. Oral administration of RES did not show an impact on total antioxidant capacity, ROS or CD. However, enzymatic activities of ROS scavenging SOD and CAT were significantly lower after high-dose compared to low-dose administration of RES (P<.03 and P<.01). In conclusion, in healthy subjects, neither 0.05 g nor 5 g RES changed blood oxidative state, although our in vitro data point to a prooxidative activity of low concentrations of RES and its metabolites, which could be important in vivo for individuals with compromised antioxidant defense capacity.  相似文献   

9.
This study aimed to find out the prevalence and antimicrobial resistance profile of Klebsiella pneumoniae in raw food items. A total of 261 raw food items, including vegetables, fruits, meat, and milk samples, were collected and processed for isolation of K. pneumoniae. Further antimicrobial susceptibility testing and molecular analysis was done to analyze the drug resistance encoding genes. The prevalence rate of K. pneumoniae was found to be high (38%), and the raw milk samples were predominantly contaminated (19/51), followed by fruits (12/51), meat (11/51), and vegetables (9/51). However, no significant association was observed for the isolation of K. pneumoniae and any particular specimen. Among the isolates, 43% were extended-spectrum β-lactamase producers, 24% were AmpC, and 20% were carbapenemase producers. The highest rates of ESBLs and AmpC were observed in vegetables (cabbage, bell pepper, and spinach) and carbapenemases in raw chicken, fish, and raw meat samples. Notably, blaCTX-M was the most prevalent, followed by blaSHV and blaTEM. Six K. pneumoniae possessed blaMOX, and five possessed blaFOX genes. Numerous carbapenemases were identified with a higher proportion of blaNDM. This study indicates that raw vegetables, fruits, meat, and milk are exposed to contaminants. These findings imply a potential threat that drug-resistant K. pneumoniae pathogens could transmit to humans through raw vegetables, fruits, and meat.  相似文献   

10.
Aqueous extract of the green fruits of the Indian plant Momordica charantia and purified Momordicatin structurally established as 4-(o-carboethoxyphenyl) butanol were evaluated in vitro and in vivo against kala-azar caused by Leishmania donovani. 50% inhibitory concentration (IC50) against Leishmania promastigotes in vitro for the crude extract and momordicatin were 0.6 mg/L and 0.02 mg/L, respectively. When administered in the hamster model of visceral leishmaniasis, 100% parasite clearance was achieved at a dose of 300 mg/kg body weight of crude extract and 10 mg/kg body weight of Momordicatin. Fe containing parasite superoxide dismutase (SOD) was totally inhibited when treated with 0.72 mg/L crude extract and 0.20 mg/L Momordicatin, respectively, whereas Cu–Zn containing SOD present in host remained unaffected. Results reveal that the mode of action of these newly found antileishmanial agents is mediated through inhibiting parasite SOD which is one of the key enzymes of the oxidative burst. It may be proposed from the present study that both crude extract of Momordica charantia and Momordicatin obtained from the fruits of the said plant may be considered as potential candidates towards developing new chemotherapeutics against leishmaniasis.  相似文献   

11.
The antiplatelet and antithrombotic effects of ent-16β,17-dihydroxy-kauran-19-oic acid (DDKA) isolated from Siegesbeckia pubescens were investigated with different methods both in vitro and in vivo. We tested the antithrombotic activity of DDKA in arterio-venous shunt model. The effects of DDKA on adenosine diphosphate (ADP)-, Thrombin-, Arachidonic acid-induced rat platelets aggregation were tested in vitro. We also assessed its bleeding side effect by measuring coagulation parameters after intravenous administration for 5 days and investigated the potential mechanisms underlying such activities. In vivo, DDKA significantly reduced thrombus weight in the model of arterio-venous shunt. Meanwhile, DDKA increased plasma cAMP level determined by radioimmunoassay in the same model. Notably, DDKA prolonged PT and APTT in rats after intravenous administration DDKA for successive 5 days. In vitro, pretreatment with DDKA on washed rat platelets significantly inhibited various agonists stimulated platelet aggregation and caused an increase in cAMP level in platelets activated by ADP. These findings support our hypothesis that DDKA possesses antiplatelet and antithrombotic activities. The mechanisms underlying such activities may involve the anticoagulatory effect and cAMP induction.  相似文献   

12.
IntroductionA number of plant species, including Cymbopogon schoenanthus, are traditionally used for the treatment of various diseases. C. schoenanthus is currently, traded in the Saudi markets, and thought to have medicinal value. This study aimed at investigating the biological activities of C. schoenanthus against both Gram-positive and Gram-negative bacteria and to identify its chemical ingredients.Materials and methodsThe inhibitory effects of water extracts of C. schoenanthus essential oils were evaluated against ten isolates of both Gram-positive and Gram-negative bacteria using the agar well diffusion and dilution methods. The minimum inhibitory concentration (MIC) was assayed using the Broth microdilution test on five of the ten isolates. The death rates were determined by the time kill assay, done according to the Clinical Laboratory Standards Institute (CLSI) guidelines. The chemical composition of the essential oils of the plant was performed using GC/MS.ResultsThe C. schoenanthus essential oil was effective against Escherichia coli, Staphylococcus aureus, methicillin-sensitive (MSSA) S. aureus (MRSA) and Klebsiella pneumoniae. The essential oil was not effective against Staphylococcus saprophyticus at the highest concentration applied of >150 μg/ml. The MIC values were as follows: 9.37 μg/ml for E. coli 4.69 μg/ml for S. aureus (MRSA), 2.34 mg/ml for MSSA and 2.34 μg/ml for K. pneumoniae. The time-kill assay indicated that there was a sharp time dependent decline in K. pneumoniae counts in the presence of the oil. This is in contrast to a gradual decline in the case of S. aureus under the same conditions. The eight major components of the essential oil were: piperitone (14.6%), cyclohexanemethanol (11.6%), β-elemene (11.6%), α-eudesmol (11.5%), elemol (10.8%), β-eudesmol (8.5%), 2-naphthalenemethanol (7.1%) and γ-eudesmol (4.2%).ConclusionThe results of the present study provide a scientific validation for the traditional use of C. schoenanthus as an antibacterial agent. Future work is needed to investigate and explore its application in the environmental and medical fields. In addition, to evaluating the efficacy of the individual ingredients separately to better understand the underlying mechanism.  相似文献   

13.
Two new eudesmane-type sesquiterpene lactones, 1-one-4-epi-alantolactone (1) and 4α,13-dihydroxy-5,7(11)-eudesmadien-12,8-olide (2), were isolated from the roots of Inula racemosa, together with six known compounds (38). The cytotoxic activities against five human cancer cell lines had been tested and compounds 3, 6, 7 and 8 exhibited moderate cytotoxic activities. Compounds 4 and 8 showed potent in vitro activities against the release of β-glucuronidase in rat polymorphonuclear leukocytes (PMNs) induced by platelet-activating factor (PAF), with the inhibitory ratios 65.4% (P < 0.01) and 80.5% (P < 0.001), at concentration of 10 μM, respectively.  相似文献   

14.
A series of novel salicyl-hydrazone analogues were synthesized and evaluated for their in vitro cytotoxic activities in five human cancer cell lines, namely, lung cancer (A549), ovarian cancer (SK-OV-3), skin cancer (SK-MEL-2), colon cancer (HCT15) and pancreatic cancer (MIA-PaCa-2) cells, and for their in vitro tropomyosin receptor kinase A (TrkA) inhibitory activities. Each of the compounds showed significant cytotoxicity against all cancer cells. Compound 3i was found to be most potent against all cancer cell lines with IC50 values of 2.46 (A549), 0.87 (SK-OV-3), 1.43 (SK-MEL-2), 0.89 (HCT15), and 0.48 μM (MIA-PaCa-2), followed by compound 3l. Cytotoxicity of 3i was similar to that of doxorubicin (0.87 μM) against HCT15 cells. Compounds 3i and 3l also showed highest TrkA inhibitory activities with IC50 values of 0.231 and 0.380 μM, respectively. A SAR study of the series revealed that compounds with hydroxyl groups showed better cytotoxicity and TrkA inhibitory potency (in the following order 2,4-OH > 2,3,4-OH > 3,4-OH > 4-OH) than compounds possessing electron donating or withdrawing groups on the benzylidenephenyl ring. Docking studies of compounds 3i and 3l conducted on the crystal structure of TrkA receptor (a promising target for anticancer agents) showed both had a high docking score and similar order of experimental TrkA inhibitory activities. The formation of several hydrogen bonds involving N and O containing moieties contributed most significantly to ligand binding and stabilization at the active site of the receptor. In addition, ligand-receptor complexes were further stabilized by π-cation, π-anion, amide-π stacked, and van der Waal’s interactions. Conformational analyses showed ligand molecules adopted similar conformations at the receptor active site during interactions, but that the low energy optimized conformations of compounds 3i and 3l differed.  相似文献   

15.
《Phytomedicine》2014,21(2):148-154
This study investigated the hepatoprotective activity of saponarin, isolated from Gypsophila trichotoma Wend., using in vitro/in vivo hepatotoxicity model based on carbone tetrachloride (CCl4)-induced liver damage in male Wistar rats. The effect of saponarin was compared with those of silymarin. In vitro experiments were carried out in primary isolated rat hepatocytes. Cell incubation with CCl4 (86 μmol l−1) led to a significant decrease in cell viability, increased LDH leakage, decreased levels of cellular GSH and elevation in MDA quantity. Cell pre-incubation with saponarin (60–0.006 μg/ml) significantly ameliorated CCl4-induced hepatic damage in a concentration-dependent manner. These results were supported by the following in vivo study. Along with decreased MDA quantity and increased level of cell protector GSH, seven day pre-treatment of rats with saponarin (80 mg/kg bw; p.o.) also prevented CCl4 (10%, p.o.)-caused oxidative damage by increasing antioxidant enzyme activities (CAT, SOD, GST, GPx, GR). Biotransformation phase I enzymes were also assessed. Administered alone, saponarin decreased EMND and AH activities but not at the same extent as CCl4 did. However, pre-treatment with saponarin significantly increased enzyme activities in comparison to CCl4 only group. The observed biochemical changes were consistent with histopathological observations where the hepatoprotective effect of saponarin was comparative to the effects of the known hepatoprotecor silymarin. Our results suggest that saponarin, isolated from Gypsophila trichotoma Wend., showed in vitro and in vivo hepatoprotective and antioxidant activity against CCl4-induced liver damage.  相似文献   

16.
In the present study V79 Chinese hamster cells were genetically engineered for stable expression of the cytochromes P450 1A1, 1A2, 1B1, and 2E1 from man and mouse to investigate species-specific differences in the regioselective metabolism and toxicity of phenanthrene (Phe), the simplest polycyclic aromatic hydrocarbon (PAH) forming a bay-region. Phe is present in various environmental samples and serves as a model substrate for PAH exposure in human biomonitoring studies. For this reason we explored metabolite profiles and metabolite-dependent cytotoxic activities in vitro. The total turnover of CYP-mediated transformation of Phe was as follows: human CYP1B1 > CYP1A1 > CYP1A2 ? CYP2E1, and for mouse CYP1A2 ? CYP2E1 > CYP1A1. Striking species differences were seen as mouse CYP1B1 did not activate Phe at all, but human CYP1B1 exhibited a significant metabolic turnover comparable to CYP1A1 and CYP1A2. In vivo studies monitoring the whole blood Phe elimination in CYP1A2 knockout and wild-type mice after oral administration confirmed involvement of CYP1A2 in the bioactivation of Phe, but other processes must contribute also. Our data suggest that in humans not only CYP1A2 expressed solely in the liver plays a crucial role in Phe metabolism, but also constitutively expressed extrahepatic CYP1B1 in tissues such as lung, kidney or intestine. This finding will substantially improve the validity of human biomonitoring studies using individual Phe metabolites for the assessment of PAH exposure.  相似文献   

17.
Two series of new thiazolidin-4-one derivatives 4ac and 8ae were designed and prepared. All the synthesized compounds were evaluated for their in vitro COX-2 selectivity and anti-inflammatory activity in vivo. Compounds 8c and 8d showed the best overall in vitro COX-2 selectivity (selectivity indexes of 4.56 and 5.68 respectively) and in vivo activities (edema inhibition % = 61.8 and 67 after 3 h, respectively) in comparison with the reference drug celecoxib (S.I. = 7.29, edema inhibition % = 60 after 3 h). In addition, 8c and 8d were evaluated for their mean effective anti-inflammatory doses (ED50 = 27.7 and 18.1 μmol/kg respectively, celecoxib ED50 = 28.2 μmol/kg) and ulcerogenic liability (reduction in ulcerogenic potential versus celecoxib = 85%, 92% respectively. Molecular docking studies were performed and the results were in agreement with that obtained from the in vitro COX inhibition assays.  相似文献   

18.
《Phytomedicine》2014,21(6):830-837
The aim of the study was to investigate the anti-rheumatoid arthritic activity of four flavonoids from Daphne genkwa (FFD) in vivo and in vitro. Flavonoids of D. genkwa were extracted by refluxing with ethanol and purified by polyamide resin. An in vivo carrageenan-induced paw edema model, tampon-granuloma model and Freund's complete adjuvant (FCA)-induced arthritis mouse model were used to evaluate the anti-rheumatoid arthritic activities of FFD. Moreover, nitric oxide (NO) release and neutral red uptake (NRU) in lipopolysaccharide (LPS)-induced murine macrophage RAW264.7 cells were used to evaluate the anti-inflammatory effect in vitro. In addition, antioxidant effect of FFD was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. A high dose of FFD significantly reduced the degree of acute inflammatory paw edema in mice as a response to carrageenan administration (p < 0.01). FFD displayed a dose-dependent inhibition of granuloma formation in mice (p < 0.05). FFD also inhibited chronic inflammation in adjuvant-induced arthritis rats when administered orally at the dose of 50 mg/kg/day (p < 0.001). In addition, FFD suppressed the production of NO and exhibited immunoregulatory function in LPS-activated RAW264.7 cells in a dose-related manner. Simultaneously, FFD revealed conspicuous antioxidant activity with IC50 values of 18.20 μg/ml. FFD possesses significant anti-inflammatory and antioxidant activity, which could be a potential therapeutic agent for chronic inflammatory disorders such as rheumatoid arthritis.  相似文献   

19.
A long-term hepatocyte model in vitro is preferable for chronic hepatotoxicity research because hepatocytes in this model of culture can preserve liver-specific functions for long period. Micro-hollow fiber reactors (MHFR), composed of polysulphone (PS) hollow fibers with a molecular weight cut-off 100 kDa, were applied to test the hepatotoxicity of acetaminophen, isoniazid and rifampicin, respectively. Monolayer culture was used as a control model for hepatocyte culture. It was found that hepatocytes within MHFR were more sensitive to toxicity of acetaminophen (0.38–1.51 g/L) than those in monolayer cultures. Furthermore, significant hepatotoxicity of isoniazid (15 mg/L) and rifampicin (10 mg/L) were detected in hepatocytes cultured in MHFR but not detected in hepatocyte monolayer, which could be due to well-preserved drug metabolizing enzymes in MHFR. These results indicate that the MHFR may be an effective model for long-term hepatotoxicity research in vitro.  相似文献   

20.
In the present study, the level of thiols and activity of related enzymes were investigated in coontail (Ceratophyllum demersum L.) plants to analyze their role in combating the stress caused upon exposure to cadmium (Cd; 0–10 μM) for a duration up to 7 d. Plants showed the maximum accumulation of 1293 μg Cd g?1 dw after 7 d at 10 μM. Significant increases in the level of total non-protein thiols (NP-SH) including phytochelatins (PCs) as well as upstream metabolites of the PC biosynthetic pathway, cysteine and glutathione (GSH) were observed. In addition, significant increases in the activities of cysteine synthase (CS), glutathione-S-transferase (GST), glutathione reductase (GR), as well as in vitro activation of phytochelatin synthase (PCS), were noticed in response to Cd. In conclusion, under Cd stress, plants adapted to a new metabolic equilibrium of thiols through coordinated synthesis and consumption to combat Cd toxicity and to accumulate it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号