首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While feed efficiency (FE) is a trait of great economic importance to the pig industry, the influence of the intestinal microbiome in determining FE is not well understood. The objective of this experiment was to determine the relative influence of FE and farm of birth on the pig colonic microbiome. Animals divergent in residual feed intake (RFI) were sourced from two geographically distinct locations (farms A + B) in Ireland. The 8 most efficient (low RFI (LRFI)) and 8 least efficient (high RFI, (HRFI)) pigs from farm A and 12 LRFI and 12 HRFI pigs from farm B were sacrificed. Colonic digesta was collected for microbial analysis using 16S ribosomal RNA gene sequencing and also for volatile fatty acid analysis. The α-diversity differed between the farms in this study, with pigs from farm A having greater diversity based on Shannon and InvSimpson measures compared to pigs from farm B (P < 0.05), with no difference identified in either Chao1 or observed measures of diversity (P > 0.05). In the analysis of β-diversity, pigs clustered based on farm of birth rather than RFI. Variation in the management of piglets, weight of the piglets, season of the year, sanitary status and dam dietary influence could potentially be causative factors in this large variation between farms. However, despite significant variation in the microbial profile between farms, consistent taxonomic differences were identified between RFI groups. Within the phylum Bacteroidetes, the LRFI pigs had increased abundance of BS11 (P < 0.05) and a tendency toward increased Bacteroidaceae (P < 0.10) relative to the HRFI group. At genus level, the LRFI pigs had increased abundance of Colinsella (P < 0.05), a tendency toward increased Bacteroides and CF231 (P < 0.10). At species level, Ruminococcus flavefaciens had increased abundance in the LRFI compared to the HRFI animals. In conclusion, while farm of birth has a substantial influence on microbial diversity in the pig colon, a microbial signature indicative of FE status was apparent.  相似文献   

2.
Clostridium difficile infection (CDI) is characterized by dysbiosis of the intestinal microbiota and a profound derangement in the fecal metabolome. However, the contribution of specific gut microbes to fecal metabolites in C. difficile-associated gut microbiome remains poorly understood. Using gas-chromatography mass spectrometry (GC-MS) and 16S rRNA deep sequencing, we analyzed the metabolome and microbiome of fecal samples obtained longitudinally from subjects with Clostridium difficile infection (n = 7) and healthy controls (n = 6). From 155 fecal metabolites, we identified two sterol metabolites at >95% match to cholesterol and coprostanol that significantly discriminated C. difficile-associated gut microbiome from healthy microbiota. By correlating the levels of cholesterol and coprostanol in fecal extracts with 2,395 bacterial operational taxonomic units (OTUs) determined by 16S rRNA sequencing, we identified 63 OTUs associated with high levels of coprostanol and 2 OTUs correlated with low coprostanol levels. Using indicator species analysis (ISA), 31 of the 63 coprostanol-associated bacteria correlated with health, and two Veillonella species were associated with low coprostanol levels that correlated strongly with CDI. These 65 bacterial taxa could be clustered into 12 sub-communities, with each community containing a consortium of organisms that co-occurred with one another. Our studies identified 63 human gut microbes associated with cholesterol-reducing activities. Given the importance of gut bacteria in reducing and eliminating cholesterol from the GI tract, these results support the recent finding that gut microbiome may play an important role in host lipid metabolism.  相似文献   

3.
Microbial communities in subsurface soil are specialized for their environment, which is distinct from that of the surface communities. However, little is known about the microbial communities (bacteria and fungi) that exist in the deeper soil horizons. Vertical changes in microbial alpha-diversity (Chao1 and Shannon indices) and community composition were investigated at four soil depths (0–10, 10–20, 20–40, and 40–60 cm) in a natural secondary forest of Betula albosinensis by high-throughput sequencing of the 16S and internal transcribed spacer rDNA regions. The numbers of operational taxonomic units (OTUs), and the Chao1 and Shannon indices decreased in the deeper soil layers. Each soil layer contained both mutual and specific OTUs. In the 40–60 cm soil layer, 175 and 235 specific bacterial and fungal OTUs were identified, respectively. Acidobacteria was the most dominant bacterial group in all four soil layers, but reached its maximum at 40–60 cm (62.88%). In particular, the 40–60 cm soil layer typically showed the highest abundance of the fungal genus Inocybe (47.46%). The Chao1 and Shannon indices were significantly correlated with the soil organic carbon content. Redundancy analysis indicated that the bacterial communities were closely correlated with soil organic carbon content (P = 0.001). Collectively, these results indicate that soil nutrients alter the microbial diversity and relative abundance and affect the microbial composition.  相似文献   

4.
Most plant-origin fiber sources used in pig production contains a mixture of soluble and insoluble non-starch polysaccharides (NSP). The knowledge about effects of these sources of NSP on the gut microbiota and its fermentation products is still scarce. The aim of this study was to investigate effects of feeding diets with native sources of NSP on the ileal and fecal microbial composition and the dietary impact on the concentration of short-chain fatty acids (SCFA) and lactic acid. The experiment comprised four diets and four periods in a change-over design with seven post valve t-cecum cannulated growing pigs. The four diets were balanced to be similar in NSP content and included one of four fiber sources, two diets were rich in pectins, through inclusion of chicory forage (CFO) and sugar beet pulp, and two were rich in arabinoxylan, through inclusion of wheat bran (WB) and grass meal. The gut microbial composition was assessed with terminal restriction fragment (TRF) length polymorphism and the abundance of Lactobacillus spp., Enterobacteriaceae, BacteroidesPrevotellaPorphyromonas and the β-xylosidase gene, xynB, were assessed with quantitative PCR. The gut microbiota did not cluster based on NSP structure (arabinoxylan or pectin) rather, the effect was to a high degree ingredient specific. In pigs fed diet CFO, three TRFs related to Prevotellaceae together consisted of more than 25% of the fecal microbiota, which is about 3 to 23 times higher (P<0.05) than in pigs fed the other diets. Whereas pigs fed diet WB had about 2 to 22 times higher abundance (P<0.05) of Megasphaera elsdenii in feces and about six times higher abundance (P<0.05) of Lactobacillus reuteri in ileal digesta than pigs fed the other diets. The total amount of digested NSP (r=0.57; P=0.002), xylose (r=0.53; P=0.004) and dietary fiber (r=0.60; P=0.001) in ileal digesta were positively correlated with an increased abundance of BacteroidesPrevotellaPorphyromonas. The effect on SCFA was correlated to specific neutral sugars where xylose increased the ileal butyric acid proportion, whereas arabinose increased the fecal butyric acid proportion. Moreover, chicory pectin increased the acetic acid proportion in both ileal digesta and feces.  相似文献   

5.
Microbiota provide their hosts with a range of beneficial services, including defense from external pathogens. However, host-associated microbial communities themselves can act as a source of opportunistic pathogens depending on the environment. Marine poikilotherms and their microbiota are strongly influenced by temperature, but experimental studies exploring how temperature affects the interactions between both parties are rare. To assess the effects of temperature, temperature stress and infection on diversity, composition and dynamics of the hemolymph microbiota of Pacific oysters (Crassostrea gigas), we conducted an experiment in a fully-crossed, three-factorial design, in which the temperature acclimated oysters (8 or 22 °C) were exposed to temperature stress and to experimental challenge with a virulent Vibrio sp. strain. We monitored oyster survival and repeatedly collected hemolymph of dead and alive animals to determine the microbiome composition by 16s rRNA gene amplicon pyrosequencing. We found that the microbial dynamics and composition of communities in healthy animals (including infection survivors) were significantly affected by temperature and temperature stress, but not by infection. The response was mediated by changes in the incidence and abundance of operational taxonomic units (OTUs) and accompanied by little change at higher taxonomic levels, indicating dynamic stability of the hemolymph microbiome. Dead and moribund oysters, on the contrary, displayed signs of community structure disruption, characterized by very low diversity and proliferation of few OTUs. We can therefore link short-term responses of host-associated microbial communities to abiotic and biotic factors and assess the potential feedback between microbiota dynamics and host survival during disease.  相似文献   

6.
Salmonella enterica is a leading cause of food borne illness. Recent studies have shown that S. enterica is a pathogen capable of causing alterations to the composition of the intestinal microbiome. A recent prospective study of French pork production farms found a statistically significant association between Lawsonia intracellularis and carriage of S. enterica. In the current study the composition of the gut microbiome was determined in pigs challenged with S. enterica serovar Typhimurium and or L. intracellularis and compared to non-challenged control pigs. Principal coordinate analysis demonstrated that there was a disruption in the composition of the gut microbiome in the colon and cecum of pigs challenged with either pathogen. The compositions of the microbiomes of challenged pigs were similar to each other but differed from the non-challenged controls. There also were statistically significant increases in Anaerobacter, Barnesiella, Pediococcus, Sporacetigenium, Turicibacter, Catenibacterium, Prevotella, Pseudobutyrivibrio, and Xylanibacter in the challenged pigs. To determine if these changes were specific to experimentally challenged pigs, we determined the compositions of the fecal microbiomes of naturally infected pigs that were carriers of S. enterica. Pigs that were frequent shedders of S. enterica were shown to have similar fecal microbiomes compared to non-shedders or pigs that shed S. enterica infrequently. In a comparison of the differentially abundant bacteria in the naturally infected pigs compared to experimentally challenged pigs, 9 genera were differentially abundant and each exhibited the same increase or decrease in abundance between the two groups. Thus, there were similar changes in the GI microbiome associated with carriage of S. enterica regardless of whether the pigs were experimentally challenged with S. enterica or acquired it naturally.  相似文献   

7.
Brachyspira hampsonii” causes disease indistinguishable from swine dysentery, and the structure of the intestinal microbiome likely plays a role in determining susceptibility of individual pigs to infection and development of clinical disease. The objectives of the current study were to determine if the pre-inoculation fecal microbiota differed between inoculated pigs that did (INOC MH) or did not (INOC non-MH) develop mucohaemorrhagic diarrhea following challenge with “B. hampsonii”, and to quantify changes in the structure of the microbiome following development of clinical disease. Fecal microbiota profiles were generated based on amplification and sequencing of the cpn60 universal target sequence from 89 samples from 18 pigs collected at −8, −5, −3 and 0 days post-inoculation, and at termination. No significant differences in richness, diversity or taxonomic composition distinguished the pre-inoculation microbiomes of INOC MH and INOC non-MH pigs. However, the development of bloody diarrhea in inoculated pigs was associated with perturbation of the microbiota relative to INOC non-MH or sham-inoculated control pigs. Specifically, the fecal microbiota of INOC MH pigs was less dense (fewer total 16S rRNA copies per gram of feces), and had a lower Bacteroidetes:Firmicutes ratio. Further investigation of the potential long-term effects of Brachyspira disease on intestinal health and performance is warranted.  相似文献   

8.
Wu S  Li RW  Li W  Beshah E  Dawson HD  Urban JF 《PloS one》2012,7(4):e35470
Helminth infection in pigs serves as an excellent model for the study of the interaction between human malnutrition and parasitic infection and could have important implications in human health. We had observed that pigs infected with Trichuris suis for 21 days showed significant changes in the proximal colon microbiota. In this study, interactions between worm burden and severity of disruptions to the microbial composition and metabolic potentials in the porcine proximal colon microbiota were investigated using metagenomic tools. Pigs were infected by a single dose of T. suis eggs for 53 days. Among infected pigs, two cohorts were differentiated that either had adult worms or were worm-free. Infection resulted in a significant change in the abundance of approximately 13% of genera detected in the proximal colon microbiota regardless of worm status, suggesting a relatively persistent change over time in the microbiota due to the initial infection. A significant reduction in the abundance of Fibrobacter and Ruminococcus indicated a change in the fibrolytic capacity of the colon microbiota in T. suis infected pigs. In addition, ∼10% of identified KEGG pathways were affected by infection, including ABC transporters, peptidoglycan biosynthesis, and lipopolysaccharide biosynthesis as well as α-linolenic acid metabolism. Trichuris suis infection modulated host immunity to Campylobacter because there was a 3-fold increase in the relative abundance in the colon microbiota of infected pigs with worms compared to naïve controls, but a 3-fold reduction in worm-free infected pigs compared to controls. The level of pathology observed in infected pigs with worms compared to worm-free infected pigs may relate to the local host response because expression of several Th2-related genes were enhanced in infected pigs with worms versus those worm-free. Our findings provided insight into the dynamics of the proximal colon microbiota in pigs in response to T. suis infection.  相似文献   

9.
《遗传学报》2021,48(11):972-983
Understanding the micro-coevolution of the human gut microbiome with host genetics is challenging but essential in both evolutionary and medical studies. To gain insight into the interactions between host genetic variation and the gut microbiome, we analyzed both the human genome and gut microbiome collected from a cohort of 190 students in the same boarding college and representing 3 ethnic groups, Uyghur, Kazakh, and Han Chinese. We found that differences in gut microbiome were greater between genetically distinct ethnic groups than those genetically closely related ones in taxonomic composition, functional composition, enterotype stratification, and microbiome genetic differentiation. We also observed considerable correlations between host genetic variants and the abundance of a subset of gut microbial species. Notably, interactions between gut microbiome species and host genetic variants might have coordinated effects on specific human phenotypes. Bacteroides ovatus, previously reported to modulate intestinal immunity, is significantly correlated with the host genetic variant rs12899811 (meta-P = 5.55 × 10−5), which regulates the VPS33B expression in the colon, acting as a tumor suppressor of colorectal cancer. These results advance our understanding of the micro-coevolution of the human gut microbiome and their interactive effects with host genetic variation on phenotypic diversity.  相似文献   

10.
PurposeTo investigated the changes of gut microbiome and fecal metabolome during anti-tuberculosis chemotherapy with isoniazid (H)-rifampin (R)-pyrazinamide (Z)-ethambutol (E).Patients and methods(1) In this study, we recruited 168 stool specimens from 49 healthy volunteers without M. tuberculosis (Mtb), 30 healthy volunteers with latently infected by Mtb, 41 patients with active tuberculosis (ATB), 28 patients with 2-month HRZE treatment and 20 patients with 2-month HRZE followed by 4-month HR treatment. (2) We used 16S rRNA sequencing and an untargeted Liquid Chromatograph Mass Spectrometer-based metabolomics to investigate the changes of gut microbiome and the alteration of fecal metabolome, respectively, during anti-TB chemotherapy.ResultsMtb infection can reduce the diversity of intestinal flora of ATB patients and change their taxonomic composition, while the diversity of intestinal flora of ATB patients were restored during anti-TB chemotherapy. Especially, family Veillonellacea and Bateroidaceae and their genera Veillonella and Bacteroides significantly increased in the gut microbiota during anti-TB chemotherapy. Additionally, Mtb infection dynamically regulates fecal metabolism in ATB patients during anti-TB chemotherapy. Interestingly, the altered abundance of fecal metabolites correlated with the altered gut microbiota, especially the change of gut Clostridium, Bacteroides and Prevotella was closely related to the change of fecal metabolites such as Trans-4-Hydroxy-L-proline and Genistein caused by Mtb infection or anti-TB chemotherapy.ConclusionAnti-TB chemotherapy with HRZE can disrupt both gut microbiotas and metabolome in ATB patients. Some specific genera and metabolites are depleted or enriched during anti-TB chemotherapy. Therefore, revealing potential relevance between gut microbiota and anti-TB chemotherapy will provide potential biomarkers for evaluating the therapeutic efficacy in ATB patients.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12088-022-01003-2.  相似文献   

11.
Mycotoxins are a major contaminant of pig feed and have negative effects on health and performance. The present study investigated the impact of single or repeated acute challenges with a diet naturally contaminated with deoxynivalenol (DON) and zearalenone (ZEN) on growth performances of finishing pigs and their fecal microbiota composition. A total of 160 pigs (castrated males and females) in two successive batches were randomly divided into four experimental groups of 40 pigs each. The control group received a control finisher diet from 99 to 154 days of age. Challenged groups were subjected to a 7-day acute challenge by being fed a DON- and ZEN-contaminated diet (3.02 mg DON/kg feed and 0.76 mg ZEN/kg feed) at 113 days (group DC), 134 days (group CD) or both 113 and 134 days (group DD). Microbiota composition was analyzed via 16S rRNA sequencing from fecal samples collected from the 80 females at 99, 119, 140 and 154 days. Challenged pigs (i.e. groups DC, CD and DD) reduced their average daily feed intake by 25% and 27% (P < 0.001) and feed efficiency by 34% and 28% (P < 0.05) during the first and second mycotoxin exposure, respectively. Microbiota composition was affected by mycotoxin exposure (P = 0.07 during the first exposure and P = 0.01 during the second exposure). At the family level, mycotoxin exposure significantly (P < 0.05) decreased the relative abundances of Ruminococcaceae, Streptococcaceae and Veillonellaceae and increased that of Erysipelotrichaceae at both 119 and 140 days of age. After the 7-day DON/ZEN challenge, the relative abundance of 6 to 148 operational taxonomic units (OTUs) differed among the treatment groups. However, none of these OTUs changed in all treatment groups. Using 27 functional pathways, pigs exposed to DON/ZEN challenges could be distinguished from control pigs using sparse partial least squares discriminant analysis, with a 15% misclassification rate. Regarding the functionality of these predictors, two pathways were involved in detoxifying mycotoxins: drug metabolism and xenobiotic metabolism by cytochrome P450. In challenged pigs, microbiota composition returned to the initial state within 3 weeks after the end of a single or repeated DON/ZEN challenge, highlighting the resilience of the gut microbiome. The feeding and growth performances of the pigs during challenge periods were significantly correlated with biological pathways related to health problems and modifications in host metabolism. To conclude, short-term DON/ZEN challenges resulted in transient modifications in the composition and functions of fecal microbiota.  相似文献   

12.
Escherichia coli O157:H7 is a major foodborne human pathogen causing disease worldwide. Cattle are a major reservoir for this pathogen and those that shed E. coli O157:H7 at >104 CFU/g feces have been termed “super-shedders”. A rich microbial community inhabits the mammalian intestinal tract, but it is not known if the structure of this community differs between super-shedder cattle and their non-shedding pen mates. We hypothesized that the super-shedder state is a result of an intestinal dysbiosis of the microbial community and that a “normal” microbiota prevents E. coli O157:H7 from reaching super-shedding levels. To address this question, we applied 454 pyrosequencing of bacterial 16S rRNA genes to characterize fecal bacterial communities from 11 super-shedders and 11 contemporary pen mates negative for E. coli O157:H7. The dataset was analyzed by using five independent clustering methods to minimize potential biases and to increase confidence in the results. Our analyses collectively indicated significant variations in microbiome composition between super-shedding and non-shedding cattle. Super-shedders exhibited higher bacterial richness and diversity than non-shedders. Furthermore, seventy-two operational taxonomic units, mostly belonging to Firmicutes and Bacteroidetes phyla, were identified showing differential abundance between these two groups of cattle. The operational taxonomic unit affiliation provides new insight into bacterial populations that are present in feces arising from super-shedders of E. coli O157:H7.  相似文献   

13.
Changes in the airway microbiome may be important in the pathophysiology of chronic lung disease in patients with cystic fibrosis. However, little is known about the microbiome in early cystic fibrosis lung disease and the relationship between the microbiomes from different niches in the upper and lower airways. Therefore, in this cross-sectional study, we examined the relationship between the microbiome in the upper (nose and throat) and lower (sputum) airways from children with cystic fibrosis using next generation sequencing. Our results demonstrate a significant difference in both α and β-diversity between the nose and the two other sampling sites. The nasal microbiome was characterized by a polymicrobial community while the throat and sputum communities were less diverse and dominated by a few operational taxonomic units. Moreover, sputum and throat microbiomes were closely related especially in patients with clinically stable lung disease. There was a high inter-individual variability in sputum samples primarily due to a decrease in evenness linked to increased abundance of potential respiratory pathogens such as Pseudomonas aeruginosa. Patients with chronic Pseudomonas aeruginosa infection exhibited a less diverse sputum microbiome. A high concordance was found between pediatric and adult sputum microbiomes except that Burkholderia was only observed in the adult cohort. These results indicate that an adult-like lower airways microbiome is established early in life and that throat swabs may be a good surrogate in clinically stable children with cystic fibrosis without chronic Pseudomonas aeruginosa infection in whom sputum sampling is often not feasible.  相似文献   

14.
The effect of encapsulated Lactobacillus acidophilus LA5 along with pasteurized longan juice on the colon microbiota was investigated by applying a dynamic model of the human gastrointestinal tract. Encapsulated L. acidophilus LA5 in pasteurized longan juice or sole encapsulated L. acidophilus LA5 exhibited the efficiency of colonizing the colon and enabling the growth of colon lactobacilli as well as beneficial bifidobacteria but inhibited the growth of fecal coliforms and clostridia. Moreover, these treatments gave rise to a significant increase of lactic acid and short-chain fatty acids such as acetate, propionate, and butyrate. Although acetate displayed the highest quantity, it was likely that after incorporating encapsulated L. acidophilus LA5 plus pasteurized longan juice, quantity of butyrate exceed propionate, and acetate in comparison with their controls. Denaturant gradient gel electrophoresis patterns confirmed that various treatments affected the alteration of microbial community within the simulator of the human intestinal microbial ecosystem.  相似文献   

15.

Background

Previously, we demonstrated that dietary protein:carbohydrate ratio dramatically affects the fecal microbial taxonomic structure of kittens using targeted 16S gene sequencing. The present study, using the same fecal samples, applied deep Illumina shotgun sequencing to identify the diet-associated functional potential and analyze taxonomic changes of the feline fecal microbiome.

Methodology & Principal Findings

Fecal samples from kittens fed one of two diets differing in protein and carbohydrate content (high–protein, low–carbohydrate, HPLC; and moderate-protein, moderate-carbohydrate, MPMC) were collected at 8, 12 and 16 weeks of age (n = 6 per group). A total of 345.3 gigabases of sequence were generated from 36 samples, with 99.75% of annotated sequences identified as bacterial. At the genus level, 26% and 39% of reads were annotated for HPLC- and MPMC-fed kittens, with HPLC-fed cats showing greater species richness and microbial diversity. Two phyla, ten families and fifteen genera were responsible for more than 80% of the sequences at each taxonomic level for both diet groups, consistent with the previous taxonomic study. Significantly different abundances between diet groups were observed for 324 genera (56% of all genera identified) demonstrating widespread diet-induced changes in microbial taxonomic structure. Diversity was not affected over time. Functional analysis identified 2,013 putative enzyme function groups were different (p<0.000007) between the two dietary groups and were associated to 194 pathways, which formed five discrete clusters based on average relative abundance. Of those, ten contained more (p<0.022) enzyme functions with significant diet effects than expected by chance. Six pathways were related to amino acid biosynthesis and metabolism linking changes in dietary protein with functional differences of the gut microbiome.

Conclusions

These data indicate that feline feces-derived microbiomes have large structural and functional differences relating to the dietary protein:carbohydrate ratio and highlight the impact of diet early in life.  相似文献   

16.
The human gut microbiota is a complex system that is essential to the health of the host. Increasing evidence suggests that the gut microbiota may play an important role in the pathogenesis of colorectal cancer (CRC). In this study, we used pyrosequencing of the 16S rRNA gene V3 region to characterize the fecal microbiota of 19 patients with CRC and 20 healthy control subjects. The results revealed striking differences in fecal microbial population patterns between these two groups. Partial least-squares discriminant analysis showed that 17 phylotypes closely related to Bacteroides were enriched in the gut microbiota of CRC patients, whereas nine operational taxonomic units, represented by the butyrate-producing genera Faecalibacterium and Roseburia, were significantly less abundant. A positive correlation was observed between the abundance of Bacteroides species and CRC disease status (R?=?0.462, P?=?0.046?<?0.5). In addition, 16 genera were significantly more abundant in CRC samples than in controls, including potentially pathogenic Fusobacterium and Campylobacter species at genus level. The dysbiosis of fecal microbiota, characterized by the enrichment of potential pathogens and the decrease in butyrate-producing members, may therefore represent a specific microbial signature of CRC. A greater understanding of the dynamics of the fecal microbiota may assist in the development of novel fecal microbiome-related diagnostic tools for CRC.  相似文献   

17.
BackgroundSeveral infectious diseases and therapeutic interventions cause gut microbe dysbiosis and associated pathology. We characterised the gut microbiome of children exposed to the helminth Schistosoma haematobium pre- and post-treatment with the drug praziquantel (PZQ), with the aim to compare the gut microbiome structure (abundance and diversity) in schistosome infected vs. uninfected children.MethodsStool DNA from 139 children aged six months to 13 years old; with S. haematobium infection prevalence of 27.34% was extracted at baseline. 12 weeks following antihelminthic treatment with praziqunatel, stool DNA was collected from 62 of the 139 children. The 16S rRNA genes were sequenced from the baseline and post-treatment samples and the sequence data, clustered into operational taxonomic units (OTUs). The OTU data were analysed using multivariate analyses and paired T- test.ResultsPre-treatment, the most abundant phyla were Bacteroidetes, followed by Firmicutes and Proteobacteria respectively. The relative abundance of taxa among bacterial classes showed limited variation by age group or sex and the bacterial communities had similar overall compositions. Although there were no overall differences in the microbiome structure across the whole age range, the abundance of 21 OTUs varied significantly with age (FDR<0.05). Some OTUs including Veillonella, Streptococcus, Bacteroides and Helicobacter were more abundant in children ≤ 1 year old compared to older children. Furthermore, the gut microbiome differed in schistosome infected vs. uninfected children with 27 OTU occurring in infected but not uninfected children, for 5 of these all Prevotella, the difference was statistically significant (p <0.05) with FDR <0.05. PZQ treatment did not alter the microbiome structure in infected or uninfected children from that observed at baseline.ConclusionsThere are significant differences in the gut microbiome structure of infected vs. uninfected children and the differences were refractory to PZQ treatment.  相似文献   

18.
Dietary resistant starch (RS) may have prebiotic properties but its effects on fermentation and the microbial population are inconsistent. This meta-analysis aimed to quantify the relationship between RS type 2 (RS2) and intestinal short-chain fatty acids (SCFA) and pH as well as certain key bacterial taxa for intestinal health in pigs. From the 24 included articles with sufficient information about the animal, and dietary and physiological measurements published between 2000 and 2017, individual sub-data sets for fermentation metabolites, pH, bacterial abundances and apparent total tract digestibility were built and used to parameterize prediction models on the effect of RS2, accounting for inter- and intra-study variability. In addition, the effect of pig’s BW at the start of the experiment and duration of the experimental period on response variables were also evaluated using backward elimination analysis. Dietary RS levels ranged from 0% to 78.0% RS, with median and mean RS levels of 28.8% and 23.0%, respectively. Negative relationships could be established between dietary RS and pH in the large intestine (P<0.05), with a stronger effect in the mid and distal colon, and feces (R2=0.64 to 0.81; P<0.001). A dietary level of 15% RS would lower the pH in the proximal, mid-, distal colon and feces by 0.2, 0.6, 0.4 and 0.6 units, respectively. Increasing RS levels, however, did not affect SCFA concentrations in the hindgut, but enhanced the molar proportion of propionate in mid-colon and reduced those of acetate in mid-colon and of butyrate in mid- and distal colon (R2=0.46 to 0.52; P<0.05). Backward elimination indicated an age-related decrease in mid-colonic propionate proportion and increase in mid- and distal colonic butyrate proportion (P<0.05), thereby modulating RS2 effects. In feces, increasing RS levels promoted fecal lactobacilli (R2=0.46; P<0.01) and bifidobacteria (R2=0.57; P<0.01), whereby the slope showed the need for a minimal RS level of 10% for a 0.5 log unit-increase in their abundance. Best-fit equations further supported that a longer experimental period increased fecal lactobacilli but decreased fecal bifidobacteria (P<0.05). In conclusion, dietary RS2 seems to effectively decrease digesta pH throughout the large intestine and increase lactic acid-producing bacteria in feces of pigs which may limit the growth of opportunistic pathogens in the hindgut. To achieve these physiologically relevant changes, dietary RS should surpass 10% to 15%.  相似文献   

19.
Microbial compositions of human and animal feces from South Korea were analyzed and characterized. In total, 38 fecal samples (14 healthy adult humans, 6 chickens, 6 cows, 6 pigs and 6 geese) were analyzed by 454 pyrosequencing of the V2 region of the 16S rRNA gene. Four major phyla, Actinobacteria, Proteobacteria, Firmicutes and Bacteroidetes, were identified in the samples. Principal coordinate analysis suggested that microbiota from the same host species generally clustered, with the exception of those from humans, which exhibited sample-specific compositions. A network-based analysis revealed that several operational taxonomic units (OTUs), such as Lactobacillus sp., Clostridium sp. and Prevotella sp., were commonly identified in all fecal sources. Other OTUs were present only in fecal samples from a single organism. For example, Yania sp. and Bifidobacterium sp. were identified specifically in chicken and human fecal samples, respectively. These specific OTUs or their respective biological markers could be useful for identifying the sources of fecal contamination in water by microbial source tracking.  相似文献   

20.
The vagina contains at least a billion microbial cells, dominated by lactobacilli. Here we perform metagenomic shotgun sequencing on cervical and fecal samples from a cohort of 516 Chinese women of reproductive age, as well as cervical, fecal, and salivary samples from a second cohort of 632 women. Factors such as pregnancy history, delivery history, cesarean section, and breastfeeding were all more important than menstrual cycle in shaping the microbiome, and such information would be necessary before trying to interpret differences between vagino-cervical microbiome data. Greater proportion of Bifidobacterium breve was seen with older age at sexual debut. The relative abundance of lactobacilli especially Lactobacillus crispatus was negatively associated with pregnancy history. Potential markers for lack of menstrual regularity, heavy flow, dysmenorrhea, and contraceptives were also identified. Lactobacilli were rare during breastfeeding or post-menopause. Other features such as mood fluctuations and facial speckles could potentially be predicted from the vagino-cervical microbiome. Gut and salivary microbiomes, plasma vitamins, metals, amino acids, and hormones showed associations with the vagino-cervical microbiome. Our results offer an unprecedented glimpse into the microbiota of the female reproductive tract and call for international collaborations to better understand its long-term health impact other than in the settings of infection or pre-term birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号