首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding and disentangling different processes underlying the assembly and diversity of communities remains a key challenge in ecology. Species can assemble into communities either randomly or due to deterministic processes. Deterministic assembly leads to species being more similar (underdispersed) or more different (overdispersed) in certain traits than would be expected by chance. However, the relative importance of those processes is not well understood for many organisms, including terrestrial invertebrates. Based on knowledge of a broad range of species traits, we tested for the presence of trait underdispersion (indicating dispersal or environmental filtering) and trait overdispersion (indicating niche partitioning) and their relative importance in explaining land snail community composition on lake islands. The analysis of community assembly was performed using a functional diversity index (Rao's quadratic entropy) in combination with a null model approach. Regression analysis with the effect sizes of the assembly tests and environmental variables gave information on the strength of under‐ and overdispersion along environmental gradients. Additionally, we examined the link between community weighted mean trait values and environmental variables using a CWM‐RDA. We found both trait underdispersion and trait overdispersion, but underdispersion (eight traits) was more frequently detected than overdispersion (two traits). Underdispersion was related to four environmental variables (tree cover, habitat diversity, productivity of ground vegetation, and location on an esker ridge). Our results show clear evidence for underdispersion in traits driven by environmental filtering, but no clear evidence for dispersal filtering. We did not find evidence for overdispersion of traits due to diet or body size, but overdispersion in shell shape may indicate niche differentiation between snail species driven by small‐scale habitat heterogeneity. The use of species traits enabled us to identify key traits involved in snail community assembly and to detect the simultaneous occurrence of trait underdispersion and overdispersion.  相似文献   

2.
Tropical forests have long fascinated ecologists, inspiring a plethora of research into the mechanisms regulating their immense biodiversity, which originally captured the interests of early natural historians and explorers, and that still persists to this day. A new focus of this research emerged in the early 2000s highlighting the potential role of neutral (stochastic) processes in regulating the composition and diversity of tropical forest communities, and thus the maintenance of a large portion of global biodiversity (Hubbell, 2001). This strictly contrasted the long‐held belief that communities assembled via the sorting of species (and their abundances) via a deterministic response to local abiotic and biotic environmental conditions, reflecting the niche of each species (Leibold & McPeek, 2006). Yet, it is unlikely that the assembly of any community is solely governed by either stochastic or deterministic processes, but instead a combination of both. However, whether deterministic processes via niche‐based environmental sorting of species, or stochastic processes reflecting pattens of dispersal limitation, neutral effects and ecological drift dominate is often unclear. This prompts questions as to whether the relative influence of one process over another is dependent on the scale (spatial or temporal) or context of the study, or specific traits of the taxa under investigation (e.g., body size). In a From the Cover paper in this issue of Molecular Ecology, Zinger et al. (2018) tackle all these issues and show, among other things, that for soil microbes and mesofauna from tropical forests, the relative contribution of stochastic and deterministic processes in assembling their communities is strongly dependent on the body size or the studied taxa.  相似文献   

3.
Jessica R. Coyle 《Oikos》2017,126(1):111-120
Forest canopies are heterogeneous environments where changes in microclimate over short distances create an opportunity for niche‐based filtering of canopy‐dwelling species assemblages. This environmental filtering may not occur if species' physiological capacities are flexible or if rapid dispersal alleviates compositional differences. I assess the role of humidity, light and temperature gradients in structuring epiphyte communities in temperate deciduous oak (Quercus) canopies and determine whether gradients filter species with fixed traits or whether environmental constraints act primarily to alter individual phenotypes. I measured environmental conditions and seven functional traits related to water and light acquisition on individual macrolichens at 60 sample locations in northern red oaks Quercus rubra in two Piedmont forests in North Carolina, USA. The effects of environmental variables on individual‐level traits and community composition were evaluated using linear mixed models and constrained ordination (RDA). In general, traits and community composition responded weakly to environmental variables and trait variation within taxa was high. Cortex thickness exhibited the strongest response, such that individuals with thicker cortices were found in samples experiencing lower humidity and higher light levels. Overall, gradients of humidity, light and temperature were not strong environmental filters that caused large changes in community composition. This was probably due to phenotypic variability within taxa that enabled species to persist across the full range of environmental conditions measured. Thus, humidity affected the phenotype of individuals, but did not limit species distributions or alter community composition at the scale of branches within trees. Community and trait responses were primarily associated with site‐level differences in humidity, suggesting that in these forests landscape‐scale climatic gradients may be stronger drivers of epiphyte community assembly than intra‐canopy environmental gradients.  相似文献   

4.
Limiting similarity and functional diversity along environmental gradients   总被引:3,自引:0,他引:3  
Recent developments in community models emphasize the importance of incorporating stochastic processes (e.g. ecological drift) in models of niche‐structured community assembly. We constructed a finite, spatially explicit, lottery model to simulate the distribution of species in a one‐dimensional landscape with an underlying gradient in environmental conditions. Our framework combines the potential for ecological drift with environmentally‐mediated competition for space in a heterogeneous environment. We examined the influence of niche breadth, dispersal distances, community size (total number of individuals) and the breadth of the environmental gradient on levels of species and functional trait diversity (i.e. differences in niche optima). Three novel results emerge from this model: (1) niche differences between adjacent species (e.g. limiting similarity) increase in smaller communities, because of the interaction of competitive effects and finite population sizes; (2) immigration from a regional species pool, stochasticity and niche‐assembly generate a bimodal distribution of species residence times (‘transient’ and ‘resident’) under a heterogeneous environment; and (3) the magnitude of environmental heterogeneity has a U‐shaped effect on diversity, because of shifts in species richness of resident vs. transient species. These predictions illustrate the potential importance of stochastic (although not necessarily neutral) processes in community assembly.  相似文献   

5.
Despite decades of study, the relative importance of niche‐based versus neutral processes in community assembly remains largely ambiguous. Recent work suggests niche‐based processes are more easily detectable at coarser spatial scales, while neutrality dominates at finer scales. Analyses of functional traits with multi‐year multi‐site biodiversity inventories may provide deeper insights into assembly processes and the effects of spatial scale. We examined associations between community composition, species functional traits, and environmental conditions for plant communities in the Kouga‐Baviaanskloof region, an area within South Africa's Cape Floristic Region (CFR) containing high α and β diversity. This region contains strong climatic gradients and topographic heterogeneity, and is comprised of distinct vegetation classes with varying fire histories, making it an ideal location to assess the role of niche‐based environmental filtering on community composition by examining how traits vary with environment. We combined functional trait measurements for over 300 species with observations from vegetation surveys carried out in 1991/1992 and repeated in 2011/2012. We applied redundancy analysis, quantile regression, and null model tests to examine trends in species turnover and functional traits along environmental gradients in space and through time. Functional trait values were weakly associated with most spatial environmental gradients and only showed trends with respect to vegetation class and time since fire. However, survey plots showed greater compositional and functional stability through time than expected based on null models. Taken together, we found clear evidence for functional distinctions between vegetation classes, suggesting strong environmental filtering at this scale, most likely driven by fire dynamics. In contrast, there was little evidence of filtering effects along environmental gradients within vegetation classes, suggesting that assembly processes are largely neutral at this scale, likely the result of very high functional redundancy among species in the regional species pool.  相似文献   

6.
A fundamental goal of ecology is to understand the factors that influence community structure and, consequently, generate heterogeneity in species richness across habitats. While niche‐assembly (e.g. species‐sorting) and dispersal‐assembly mechanisms are widely recognized as factors structuring communities, there remains substantial debate concerning the relative importance of each of these mechanisms. Using freshwater snails as a model system, we explore how abiotic and biotic factors interact with dispersal to structure local communities and generate regional patterns in species richness. Our data set consisted of 24 snail species from 43 ponds and lakes surveyed for seven years on the Univ. of Michigan's E. S. George Reserve and Pinckney State Recreation Area near Ann Arbor, Michigan. We found that heterogeneity in habitat conditions mediated species‐sorting mechanism to drive patterns in snail species richness across sites. In particular, physical environmental variables (i.e. habitat area, hydroperiod, and canopy cover), pH, and fish presence accounted for the majority of variation in the species richness across sites. We also found evidence of Gleasonian structure (i.e. significant species turnover with stochastic species loss) in the metacommunity. Turnover in snail species distributions was driven by the replacement of several pulmonate species with prosobranch species at the pond permanence transition. Turnover appeared to be driven by physiological constraints associated with differences in respiration mode between the snail orders and shell characteristics that deter molluscivorous fish. In contrast to these niche‐assembly mechanisms, there was no evidence that dispersal‐assembly mechanisms were structuring the communities. This suggests that niche‐assembly mechanisms are more important than dispersal‐assembly mechanisms for structuring local snail communities.  相似文献   

7.
The observation of non‐random phylogenetic distribution of traits in communities provides evidence for niche‐based community assembly. Environment may influence the phylogenetic structure of communities because traits determining how species respond to prevailing conditions can be phylogenetically conserved. In this study, we investigate the variation of butterfly species richness and of phylogenetic α‐ and β‐diversities along temperature and plant species richness gradients. Our study indicates that butterfly richness is independently positively correlated to temperature and plant species richness in the study area. However, the variation of phylogenetic α‐ and β‐diversities is only correlated to temperature. The significant phylogenetic clustering at high elevation suggests that cold temperature filters butterfly lineages, leading to communities mostly composed of closely related species adapted to those climatic conditions. These results suggest that in colder and more severe conditions at high elevations deterministic processes and not purely stochastic events drive the assemblage of butterfly communities.  相似文献   

8.
Temperature is widely regarded as a major driver of species richness, but the mechanisms are debated. Niche theory suggests temperature may affect richness by filtering traits and species in colder habitats while promoting specialization in warmer ones. However, tests of this theory are rare because niche dimensions are challenging to quantify along broad thermal gradients. Here, we use individual‐level trait data from a long‐term monitoring network spanning a large geographic extent to test niche‐based theory of community assembly in small mammals. We examined variation in body size among 23 communities of North American rodents sampled across the National Ecological Observatory Network (NEON), ranging from northern hardwood forests to subtropical deserts. We quantified body size similarity among species using a metric of overlap that accounts for individual variation, and fit a structural equation model to disentangle the relationships between temperature, productivity, body size overlap, and species richness. We document a latitudinal gradient of declining similarity in body size among species towards the tropics and overall increase in the dimensions of community‐wide trait space in warmer habitats. Neither environmental temperature nor net primary productivity directly affect rodent species richness. Instead, temperature determines the community‐wide niche space that species can occupy, which in turn alters richness. We suggest a latitudinal gradient of trait space expansion towards the tropics may be widespread and underlie gradients in species diversity.  相似文献   

9.
Symbiotic microbial communities are important for host health, but the processes shaping these communities are poorly understood. Understanding how community assembly processes jointly affect microbial community composition is limited because inflexible community models rely on rejecting dispersal and drift before considering selection. We developed a flexible community assembly model based on neutral theory to ask: How do dispersal, drift and selection concurrently affect the microbiome across environmental gradients? We applied this approach to examine how a fungal pathogen affected the assembly processes structuring the amphibian skin microbiome. We found that the rejection of neutrality for the amphibian microbiome across a fungal gradient was not strictly due to selection processes, but was also a result of species‐specific changes in dispersal and drift. Our modelling framework brings the qualitative recognition that niche and neutral processes jointly structure microbiomes into quantitative focus, allowing for improved predictions of microbial community turnover across environmental gradients.  相似文献   

10.
Communities are thought to be assembled by two types of filters: by the environment relating to the fundamental niche and by biotic interactions relating to the realized niche. Both filters include parameters related to functional traits and their variation along environmental gradients. Here, we infer the general importance of environmental filtering of a functional trait determining local community assembly within insular adaptive radiations on the example of Caribbean Anolis lizards. We constructed maps for the probability of presence of Anolis ecomorphs (ecology‐morphology‐behavior specialists) on the Greater Antilles and overlaid these to estimate ecomorph community completeness (ECC) over the landscape. We then tested for differences in environmental parameter spaces among islands for real and cross‐fitted ECC values to see whether the underlying assembly filters are deterministic (i.e., similar among islands). We then compared information‐theoretic models of climatic and landscape parameters among Greater Antillean islands and inferred whether body mass as functional trait determines ECC. We found areas with high ECC to be strongly correlated with environmental filters, partly related to elevation. The environmental parameters influencing high ECC differed among islands. With the exception of the Jamaican twig ecomorph (which we suspect to be misclassified), smaller ecomorphs were more restricted to higher elevations than larger ones which might reflect filtering on the basis of differential physiological restrictions of ecomorphs. Our results in Anolis show that local community assembly within adaptive island radiations of animals can be determined by environmental filtering of functional traits, independently from species composition and realized environmental niche space.  相似文献   

11.
One of the oldest challenges in ecology is to understand the processes that underpin the composition of communities. Historically, an obvious way in which to describe community compositions has been diversity in terms of the number and abundances of species. However, the failure to reject contradictory models has led to communities now being characterized by trait and phylogenetic diversities. Our objective here is to demonstrate how species, trait and phylogenetic diversity can be combined together from large to local spatial scales to reveal the historical, deterministic and stochastic processes that impact the compositions of local communities. Research in this area has recently been advanced by the development of mathematical measures that incorporate trait dissimilarities and phylogenetic relatedness between species. However, measures of trait diversity have been developed independently of phylogenetic measures and conversely most of the phylogenetic diversity measures have been developed independently of trait diversity measures. This has led to semantic confusions particularly when classical ecological and evolutionary approaches are integrated so closely together. Consequently, we propose a unified semantic framework and demonstrate the importance of the links among species, phylogenetic and trait diversity indices. Furthermore, species, trait and phylogenetic diversity indices differ in the ways they can be used across different spatial scales. The connections between large‐scale, regional and local processes allow the consideration of historical factors in addition to local ecological deterministic or stochastic processes. Phylogenetic and trait diversity have been used in large‐scale analyses to determine how historical and/or environmental factors affect both the formation of species assemblages and patterns in species richness across latitude or elevation gradients. Both phylogenetic and trait diversity have been used at different spatial scales to identify the relative impacts of ecological deterministic processes such as environmental filtering and limiting similarity from alternative processes such as random speciation and extinction, random dispersal and ecological drift. Measures of phylogenetic diversity combine phenotypic and genetic diversity and have the potential to reveal both the ecological and historical factors that impact local communities. Consequently, we demonstrate that, when used in a comparative way, species, trait and phylogenetic structures have the potential to reveal essential details that might act simultaneously in the assembly of species communities. We highlight potential directions for future research. These might include how variation in trait and phylogenetic diversity alters with spatial distances, the role of trait and phylogenetic diversity in global‐scale gradients, the connections between traits and phylogeny, the importance of trait rarity and independent evolutionary history in community assembly, the loss of trait and phylogenetic diversity due to human impacts, and the mathematical developments of biodiversity indices including within‐species variations.  相似文献   

12.
13.

Questions

Rapid climate change in northern latitudes is expected to influence plant functional traits of the whole community (community-level traits) through species compositional changes and/or trait plasticity, limiting our ability to anticipate climate warming impacts on northern plant communities. We explored differences in plant community composition and community-level traits within and among four boreal peatland sites and determined whether intra- or interspecific variation drives community-level traits.

Location

Boreal biome of western North America.

Methods

We collected plant community composition and functional trait data along dominant topoedaphic and/or hydrologic gradients at four peatland sites spanning the latitudinal extent of the boreal biome of western North America. We characterized variability in community composition and community-level traits of understorey vascular and moss species both within (local-scale) and among sites (regional-scale).

Results

Against expectations, community-level traits of vascular plant and moss species were generally consistent among sites. Furthermore, interspecific variation was more important in explaining community-level trait variation than intraspecific variation. Within-site variation in both community-level traits and community composition was greater than among-site variation, suggesting that local environmental gradients (canopy density, organic layer thickness, etc.) may be more influential in determining plant community processes than regional-scale gradients.

Conclusions

Given the importance of interspecific variation to within-site shifts in community-level traits and greater variation of community composition within than among sites, we conclude that climate-induced shifts in understorey community composition may not have a strong influence on community-level traits in boreal peatlands unless local-scale environmental gradients are substantially altered.  相似文献   

14.
15.
An observed species–area relationship (SAR) in assemblages of oribatid mites inhabiting natural canopy habitats (suspended soils) led to an experimental investigation of how patch size, height in canopy and moisture influence the species richness, abundance and community composition of arboreal oribatid mites. Colonisation by oribatid mites on 90 artificial canopy habitats (ACHs) of three sizes placed at each of three heights on the trunks of ten western redcedar trees was recorded over a 1‐year period. Fifty‐nine oribatid mite species colonised the ACHs, and richness increased with the moisture content and size of the habitat patch. Oribatid mite species richness and abundance, and ACH moisture content decreased with increasing ACH height in the canopy. Patterns in the species richness and community composition of ACHs were non‐random and demonstrated a significant nested pattern. Correlations of patch size, canopy height and moisture content with community nestedness suggest that species‐specific environmental tolerances combined with the differential dispersal abilities of species contributed to the non‐random patterns of composition in these habitats. In line with the prediction that niche‐selection filters out species from the regional pool that cannot tolerate environmental harshness, moisture‐stressed ACHs in the high canopy had lower community variability than ACHs in the lower canopy. Colonising source pools to ACHs were almost exclusively naturally‐occurring canopy sources, but low levels of colonisation from the forest floor were apparent at low heights within the ACH system. We conclude that stochastic dispersal dynamics within the canopy are crucial to understanding oribatid mite community structure in suspended soils, but that the relative importance of stochastic dispersal assembly may be dependent on a strong deterministic element to the environmental tolerances of individual species which drives non‐random patterns of community assembly.  相似文献   

16.
Although both niche‐based and neutral processes are involved in community assembly, most models on the effects of habitat loss are stochastic, assuming neutral communities mainly affected by ecological drift and random extinction. Given that habitat loss is considered the most important driver of the current biodiversity crisis, unraveling the processes underlying the effects of habitat loss is critical from both a theoretical and an applied perspective. Here we unveil the importance of niche‐based and neutral processes to species extinction and community assembly across a gradient of habitat loss, challenging the predictions of neutral models. We draw on a large dataset containing the distribution of 3653 individuals of 42 species, representing 35% of the small mammal species of the Atlantic Forest hotspot, obtained in 68 sites across three continuously‐forested landscapes and three adjacent 10 000‐ha fragmented landscapes differing in the amount of remaining forest (50%, 30% and 10%). By applying a null‐model approach, we investigated β‐diversity patterns by detecting deviations of observed community similarity from the similarity between randomly assembled communities. Species extinction following habitat loss was decidedly non‐random, in contrast to the notion that fragmented communities are mainly driven by ecological drift. Instead, habitat loss led to a strong biotic homogenization. Moreover, species composition changed abruptly at the same level of landscape‐scale habitat loss that has already been associated with a drastic decline in species richness. Habitat loss, as other anthropogenic disturbances, can thus be seen as a strong ecological filter that increases (rather than decreases) the importance of deterministic processes in community assembly. As such, critical advances for the development of conservation science lie on the incorporation of the relevant niche traits associated with extinction proneness into models of habitat loss. The results also underscore the fundamental importance of pro‐active measures to prevent human‐modified landscapes surpassing critical ecological thresholds.  相似文献   

17.
Ecological approaches to community assembly have emphasized the interplay between neutral processes, niche-based environmental filtering and niche-based species sorting in an interactive milieu. Recently, progress has been made in terms of aligning our vocabulary with conceptual advances, assessing how trait-based community functional parameters differ from neutral expectation and assessing how traits vary along environmental gradients. Experiments have confirmed the influence of these processes on assembly and have addressed the role of dispersal in shaping local assemblages. Community phylogenetics has forged common ground between ecologists and biogeographers, but it is not a proxy for trait-based approaches. Community assembly theory is in need of a comparative synthesis that addresses how the relative importance of niche and neutral processes varies among taxa, along environmental gradients, and across scales. Towards that goal, we suggest a set of traits that probably confer increasing community neutrality and regionality and review the influences of stress, disturbance and scale on the importance of niche assembly. We advocate increasing the complexity of experiments in order to assess the relative importance of multiple processes. As an example, we provide evidence that dispersal, niche processes and trait interdependencies have about equal influence on trait-based assembly in an experimental grassland.  相似文献   

18.
Niche‐based selection and stochastic processes can operate simultaneously to generate spatial and temporal variation in species composition. Yet, the conditions under which ecological dynamics are dominated by niche‐based versus stochastic processes are poorly understood. Using a field experiment in early‐successional temperate grassland and null models of beta diversity, this study investigates the effects of soil nutrient supply on the relative importance of niche‐based selection versus stochastic dynamics for variation in species composition among sites. Nutrient availability was manipulated experimentally, individual seed mixtures with 25 species were sown in each experimental plot, and then stochastic and deterministic niche‐based assembly processes were allowed to happen. We found that compositional variation among grassland plots with low nutrient supply was driven by stochastic immigration and extinctions. In contrast, nutrient enrichment reduced the importance of stochasticity and imposed a deterministic environmental filter that homogenized communities through the selection of few species with greater competitive ability for light. This demonstrates that soil nutrient availability is a critical environmental feature that dictates the degree to which terrestrial plant communities are controlled by niche‐based selection versus stochastic assembly processes. Our study shows further that alternative states of eutrophic grasslands emerge from initial stochastic variation in the composition of a particular functional group of species that can become dominant at high nutrient supply. We discuss potential mechanisms underlying the shift from stochastic to niche‐driven dynamics along soil nutrient gradients.  相似文献   

19.
Several multi-year biodiversity experiments have shown positive species richness–productivity relationships which strengthen over time, but the mechanisms which control productivity are not well understood. We used experimental grasslands (Jena Experiment) with mixtures containing different numbers of species (4, 8, 16 and 60) and plant functional groups (1–4; grasses, legumes, small herbs, tall herbs) to explore patterns of variation in functional trait composition as well as climatic variables as predictors for community biomass production across several years (from 2003 to 2009). Over this time span, high community mean trait values shifted from the dominance of trait values associated with fast growth to trait values suggesting a conservation of growth-related resources and successful reproduction. Increasing between-community convergence in means of several productivity-related traits indicated that environmental filtering and exclusion of competitively weaker species played a role during community assembly. A general trend for increasing functional trait diversity within and convergence among communities suggested niche differentiation through limiting similarity in the longer term and that similar mechanisms operated in communities sown with different diversity. Community biomass production was primarily explained by a few key mean traits (tall growth, large seed mass and leaf nitrogen concentration) and to a smaller extent by functional diversity in nitrogen acquisition strategies, functional richness in multiple traits and functional evenness in light-acquisition traits. Increasing species richness, presence of an exceptionally productive legume species (Onobrychis viciifolia) and climatic variables explained an additional proportion of variation in community biomass. In general, community biomass production decreased through time, but communities with higher functional richness in multiple traits had high productivities over several years. Our results suggest that assembly processes within communities with an artificially maintained species composition maximize functional diversity through niche differentiation and exclusion of weaker competitors, thereby maintaining their potential for high productivity.  相似文献   

20.
Glacial retreat creates new habitat which is colonized and developed by plants and animals during the process of primary succession. While there has been much debate about the relative role of deterministic and stochastic processes during terrestrial succession, evidence from freshwater ecosystems remains minimal and a general consensus is lacking. Using a unique 27 years record of community assembly following glacial recession in southeast Alaska, we demonstrate significant change in the trait composition of stream invertebrate communities as catchment glacial cover decreased from ~70% to zero. Functional diversity increased significantly as glacier cover decreased and taxonomic richness increased. Null modelling approaches led to a key finding that niche filtering processes were dominant when glacial cover was extensive, reflecting water temperature and dispersal constraints. Thereafter the community shifted towards co‐occurrence of stochastic and deterministic assembly processes. A further novel discovery was that intrinsic functional redundancy developed throughout the study, particularly because new colonizers possessed similar traits to taxa already present. Rapid glacial retreat is occurring in Arctic and alpine environments worldwide and the assembly processes observed in this study provide new fundamental insights into how glacially influenced stream ecosystems will respond. The findings support tolerance as a key primary successional mechanism in this system, and have broader value for developing our understanding of how biological communities in river ecosystems assemble or restructure in response to environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号