首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A suggestion that limited migration, i.e., population viscosity, should favor the evolution of altruism has been challenged by recent kin selection models explicitly incorporating restricted migration. It is demonstrated that these models compound two distinct elements of population structure, spatial-genotypic variation and density regulation. These two characteristics are often determined by distinct biological processes. While they may be linked under certain circumstances, this is not invariably true. A simple modification of the migration system employed in these studies decouples migration and population regulation thus favoring inter-group selection. At least in some cases, restricted migration will facilitate the evolution of altruism.  相似文献   

2.
When Hamilton defined the concept of inclusive fitness, he specifically was looking to define the fitness of an individual in terms of that individual's behavior, and the effects of its’ behavior on other related individuals. Although an intuitively attractive concept, issues of accounting for fitness, and correctly assigning it to the appropriate individual make this approach difficult to implement. The direct fitness approach has been suggested as a means of modeling kin selection while avoiding these issues. Whereas Hamilton's inclusive fitness approach assigns to the focal individual the fitness effects of its behavior on other related individuals, the direct fitness approach assigns the fitness effects of other actors to the focal individual. Contextual analysis was independently developed as a quantitative genetic approach for measuring multilevel selection in natural populations. Although the direct fitness approach and contextual analysis come from very different traditions, both methods rely on the same underlying equation, with the primary difference between the two approaches being that the direct fitness approach uses fitness optimization modeling, whereas with contextual analysis, the same equation is used to solve for the change in fitness associated with a change in phenotype when the population is away from the optimal phenotype.  相似文献   

3.
An experiment was conducted comparing multilevel selection in Japanese quail for 43 days weight and survival with birds housed in either kin (K) or random (R) groups. Multilevel selection significantly reduced mortality (6.6% K vs. 8.5% R) and increased weight (1.30 g/MG K vs. 0.13 g/MG R) resulting in response an order of magnitude greater with Kin than Random. Thus, multilevel selection was effective in reducing detrimental social interactions, which contributed to improved weight gain. The observed rates of response did not differ significantly from expected, demonstrating that current theory is adequate to explain multilevel selection response. Based on estimated genetic parameters, group selection would always be superior to any other combination of multilevel selection. Further, near optimal results could be attained using multilevel selection if 20% of the weight was on the group component regardless of group composition. Thus, in nature the conditions for multilevel selection to be effective in bringing about social change maybe common. In terms of a sustainability of breeding programs, multilevel selection is easy to implement and is expected to give near optimal responses with reduced rates of inbreeding as compared to group selection, the only requirement is that animals be housed in kin groups.  相似文献   

4.
Within-host competition between parasite genotypes can play an important role in the evolution of parasite virulence. For example, competition can increase virulence by imposing selection for parasites that replicate at a faster absolute rate within the host, but may also decrease virulence by selecting for faster relative growth rates through social exploitation of conspecifics. For many parasites, both outcomes are possible. We investigated how competition affected the evolution of virulence of the opportunistic pathogen Pseudomonas aeruginosa in caterpillar hosts, over the course of an approximately 60 generation selection experiment. We initiated infections with clonal populations of either wild-type bacteria or an isogenic mutant with an approximately 100-fold higher mutation rate, resulting in low and high between-genotype competition, respectively. We observed the evolution of increased virulence, growth rate, and public goods cheating (exploitation of extracellular iron scavenging siderophores produced by ancestral populations) in mutator but not wild-type, populations. We conclude increases in absolute within-host growth rates appear to be more important than social cheating in driving virulence evolution in this experimental context.  相似文献   

5.
Precopulatory sexual selection is the association between fitness and traits associated with mate acquisition. Although sexual selection is generally recognized to be a powerful evolutionary force, most investigations are limited to characters belonging to individuals. A broader multilevel perspective acknowledges that individual fitness can be affected by aspects of mating success that are characters of groups, such as families. Parental mating success in polygynous or polyandrous human societies may exemplify traits under group‐level sexual selection. Using fitness measures that account for age‐structure, I measure multilevel selection for mate number over 55 years in a human population with declining rates of polygyny. Sexual selection had three components: individual‐level selection for ever‐mating (whether an individual mated) and individual‐ and family‐level selection for polyandry and polygyny. Family‐ and individual‐level selection for polygyny was equally strong, three times stronger than family‐level selection for polyandry and more than an order of magnitude stronger than individual‐level selection for polyandry. However, individual‐level selection for polyandry and polygyny was more effective at explaining relative fitness variance than family‐level selection. Selection for ever‐mating was the most important source of sexual selection for fitness; variation for ever‐mating explained 23% of relative fitness variance.  相似文献   

6.
Local adaptation along environmental gradients may drive plant species radiation within the Cape Floristic Region (CFR), yet few studies examine the role of ecologically based divergent selection within CFR clades. In this study, we ask whether populations within the monophyletic white protea clade (Protea section Exsertae, Proteaceae) differ in key functional traits along environmental gradients and whether differences are consistent with local adaptation. Using seven taxa, we measured trait–environment associations and selection gradients across 35 populations of wild adults and their offspring grown in two common gardens. Focal traits were leaf size and shape, specific leaf area (SLA), stomatal density, growth, and photosynthetic rate. Analyses on wild and common garden plants revealed heritable trait differences that were associated with gradients in rainfall seasonality, drought stress, cold stress, and less frequently, soil fertility. Divergent selection between gardens generally matched trait–environment correlations and literature‐based predictions, yet variation in selection regimes among wild populations generally did not. Thus, selection via seedling survival may promote gradient‐wide differences in SLA and leaf area more than does selection via adult fecundity. By focusing on the traits, life stages, and environmental clines that drive divergent selection, our study uniquely demonstrates adaptive differentiation among plant populations in the CFR.  相似文献   

7.
How competitive interactions and population structure promote or inhibit cooperation in animal groups remains a key challenge in social evolution. In eusocial aphids, there is no single explanation for what predisposes some lineages of aphids to sociality, and not others. Because the assumption has been that most aphid species occur in essentially clonal groups, the roles of intra- and interspecific competition and population structure in aphid sociality have been given little consideration. Here, I used microsatellites to evaluate the patterns of variation in the clonal group structure of both social and nonsocial aphid species. Multiclonal groups are consistent features across sites and host plants, and all species—social or not—can be found in groups composed of large fractions of multiple clones, and even multiple species. Between-group dispersal in gall-forming aphids is ubiquitous, implying that factors acting ultimately to increase between-clone interactions and decrease within-group relatedness were present in aphids prior to the origins of sociality. By demonstrating that between-group dispersal is common in aphids, and thus interactions between clones are also common, these results suggest that understanding the ecological dynamics of dispersal and competition may offer unique insights into the evolutionary puzzle of sociality in aphids.  相似文献   

8.
In spite of its intrinsic evolutionary instability, altruistic behavior in social groups is widespread in nature, spanning from organisms endowed with complex cognitive abilities to microbial populations. In this study, we show that if social individuals have an enhanced tendency to form groups and fitness increases with group cohesion, sociality can evolve and be maintained in the absence of actively assortative mechanisms such as kin recognition or nepotism toward other carriers of the social gene. When explicitly taken into account in a game‐theoretical framework, the process of group formation qualitatively changes the evolutionary dynamics with respect to games played in groups of constant size and equal grouping tendencies. The evolutionary consequences of the rules underpinning the group size distribution are discussed for a simple model of microbial aggregation by differential attachment, indicating a way to the evolution of sociality bereft of peer recognition.  相似文献   

9.
The main objective of this special section is not to review the broad field of landscape genetics, but to provide a glimpse of how the developing landscape genetics perspective has the potential to change the way we study evolution. Evolutionary landscape genetics is the study of how migration and population structure affects evolutionary processes. As a field it dates back to Sewall Wright and the origin of theoretical population genetics, but empirical tests of adaptive processes of evolution in natural landscapes have been rare. Now, with recent developments in technology, methodology, and modeling tools, we are poised to trace adaptive genetic variation across space and through time. Not only will we see more empirical tests of classical theory, we can expect to see new phenomena emerging, as we reveal complex interactions among evolutionary processes as they unfold in natural landscapes.  相似文献   

10.
Natural diversity in aging and other life‐history patterns is a hallmark of organismal variation. Related species, populations, and individuals within populations show genetically based variation in life span and other aspects of age‐related performance. Population differences are especially informative because these differences can be large relative to within‐population variation and because they occur in organisms with otherwise similar genomes. We used experimental evolution to produce populations divergent for life span and late‐age fertility and then used deep genome sequencing to detect sequence variants with nucleotide‐level resolution. Several genes and genome regions showed strong signatures of selection, and the same regions were implicated in independent comparisons, suggesting that the same alleles were selected in replicate lines. Genes related to oogenesis, immunity, and protein degradation were implicated as important modifiers of late‐life performance. Expression profiling and functional annotation narrowed the list of strong candidate genes to 38, most of which are novel candidates for regulating aging. Life span and early age fecundity were negatively correlated among populations; therefore, the alleles we identified also are candidate regulators of a major life‐history trade‐off. More generally, we argue that hitchhiking mapping can be a powerful tool for uncovering the molecular bases of quantitative genetic variation.  相似文献   

11.
12.
Although cooperative systems can persist in nature despite the potential for exploitation by noncooperators, it is often observed that small changes in population demography can tip the balance of selective forces for or against cooperation. Here we consider the role of population density in the context of microbial cooperation. First, we account for conflicting results from recent studies by demonstrating theoretically that: (1) for public goods cooperation, higher densities are relatively unfavorable for cooperation; (2) in contrast, for self-restraint–type cooperation, higher densities can be either favorable or unfavorable for cooperation, depending on the details of the system. We then test our predictions concerning public goods cooperation using strains of the pathogenic bacterium Pseudomonas aeruginosa that produce variable levels of a public good—iron-scavenging siderophore molecules. As predicted, we found that the relative fitness of cheats (under-producers) was greatest at higher population densities. Furthermore, as assumed by theory, we show that this occurs because cheats are better able to exploit the cooperative siderophore production of other cells when they are physically closer to them.  相似文献   

13.
Modernization has increased longevity and decreased fertility in many human populations, but it is not well understood how or to what extent these demographic transitions have altered patterns of natural selection. I integrate individual‐based multivariate phenotypic selection approaches with evolutionary demographic methods to demonstrate how a demographic transition in 19th century female populations of Utah altered relationships between fitness and age‐specific survival and fertility. Coincident with this demographic transition, natural selection for fitness, as measured by the opportunity for selection, increased by 13% to 20% over 65 years. Proportional contributions of age‐specific survival to total selection (the complement to age‐specific fertility) diminished from approximately one third to one seventh following a marked increase in infant survival. Despite dramatic reductions in age‐specific fertility variance at all ages, the absolute magnitude of selection for fitness explained by age‐specific fertility increased by approximately 45%. I show that increases in the adaptive potential of fertility traits followed directly from decreased population growth rates. These results suggest that this demographic transition has increased the adaptive potential of the Utah population, intensified selection for reproductive traits, and de‐emphasized selection for survival‐related traits.  相似文献   

14.
Tolerance to competition has been hypothesized to reduce the negative impact of plant–plant competition on fitness. Although competitive interactions are a strong selective force, an analysis of net selection on tolerance to competition is absent in the literature. Using 55 full/half‐sibling families from 18 maternal lines in the crop weed Ipomoea purpurea, we measured fitness and putative tolerance traits when grown with and without competition in an agricultural field. We tested for the presence of genetic variation for tolerance to competition and determined if there were costs and benefits of this trait. We also assessed correlations between tolerance and potential tolerance traits. We uncovered a fitness benefit of tolerance in the presence of competition and a cost in its absence. We failed to detect evidence of additive genetic variation underlying tolerance, but did uncover the presence of a significant maternal‐line effect for tolerance, which suggests its evolutionary trajectory is not easily predicted. The cost of tolerance is likely due to later initiation of flowering of tolerant individuals in the absence of competition, whereas relative growth rate was found to positively covary with tolerance in the presence of competition, and can thus be considered a tolerance trait.  相似文献   

15.
子叶节区理论与木材结构的演化   总被引:2,自引:0,他引:2  
谷颐  赵丽辉 《植物研究》1999,19(2):136-142
从系统发育看,出现最早的应是早已灭亡的乔木状蕨类植物的隐花植物式木材,例如:Lepidodendron,sphenophyllum等。现存的都是出现在古生代末期和中生代以后的显花植物式木材,它包括裸子植的的叶子树材与被子植物的痴味树材。  相似文献   

16.
We evaluate Sewall Wright's three-phase “shifting balance” theory of evolution, examining both the theoretical issues and the relevant data from nature and the laboratory. We conclude that while phases I and II of Wright's theory (the movement of populations from one “adaptive peak” to another via drift and selection) can occur under some conditions, genetic drift is often unnecessary for movement between peaks. Phase III of the shifting balance, in which adaptations spread from particular populations to the entire species, faces two major theoretical obstacles: (1) unlike adaptations favored by simple directional selection, adaptations whose fixation requires some genetic drift are often prevented from spreading by barriers to gene flow; and (2) it is difficult to assemble complex adaptations whose constituent parts arise via peak shifts in different demes. Our review of the data from nature shows that although there is some evidence for individual phases of the shifting balance process, there are few empirical observations explained better by Wright's three-phase mechanism than by simple mass selection. Similarly, artificial selection experiments fail to show that selection in subdivided populations produces greater response than does mass selection in large populations. The complexity of the shifting balance process and the difficulty of establishing that adaptive valleys have been crossed by genetic drift make it impossible to test Wright's claim that adaptations commonly originate by this process. In view of these problems, it seems unreasonable to consider the shifting balance process as an important explanation for the evolution of adaptations.  相似文献   

17.
Reciprocity is often invoked to explain cooperation. Reciprocity is cognitively demanding, and both direct and indirect reciprocity require that individuals store information about the propensity of their partners to cooperate. By contrast, generalized reciprocity, wherein individuals help on the condition that they received help previously, only relies on whether an individual received help in a previous encounter. Such anonymous information makes generalized reciprocity hard to evolve in a well‐mixed population, as the strategy will lose out to pure defectors. Here we analyze a model for the evolution of generalized reciprocity, incorporating assortment of encounters, to investigate the conditions under which it will evolve. We show that, in a well‐mixed population, generalized reciprocity cannot evolve. However, incorporating assortment of encounters can favor the evolution of generalized reciprocity in which indiscriminate cooperation and defection are both unstable. We show that generalized reciprocity can evolve under both the prisoner's dilemma and the snowdrift game.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号