首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu S  Song Z  Luo J  Dai Y  Li N 《Journal of biotechnology》2011,154(1):21-24
RAD51 and RAD54, members of the RAD52 epistasis group, play key roles in homologous recombination (HR). The efficiency of homologous recombination (HR) can be increased by over-expression of either of them. A vector that allows co-expression of RAD51 and RAD54 was constructed to investigate interactions between the two proteins during extra-chromosomal HR. The efficiency of extra-chromosomal HR evaluated by GFP extra-chromosomal HR was enhanced (110-245%) in different transfected Human sarcoma (HT-1080) cell colonies. We observed that RAD51 clearly promotes extra-chromosomal HR; however, the actions of RAD54 in extra-chromosomal HR were weak. Our data suggest that RAD51 may function as a universal factor during HR, whereas RAD54 mainly functions in other types of HR (gene targeting or intra-chromosomal HR), which involves interaction with chromosomal DNA.  相似文献   

2.
The RAD51 family of proteins is involved in homologous recombination (HR) DNA repair and maintaining chromosome integrity. To identify candidates that interact with HR proteins, the mouse RAD51C, RAD51D and XRCC2 proteins were purified using bacterial expression systems and each of them used to co‐precipitate interacting partners from mouse embryonic fibroblast cellular extracts. Mass spectroscopic analysis was performed on protein bands obtained after 1‐D SDS‐PAGE of co‐precipitation eluates from cell extracts of mitomycin C treated and untreated mouse embryonic fibroblasts. Profiling of the interacting proteins showed a clear bias toward nucleic acid binding and modification proteins. Interactions of four candidate proteins (SFPQ, NONO, MSH2 and mini chromosome maintenance protein 2) were confirmed by Western blot analysis of co‐precipitation eluates and were also verified to form ex vivo complexes with RAD51D. Additional interacting proteins were associated with cell division, embryo development, protein and carbohydrate metabolism, cellular trafficking, protein synthesis, modification or folding, and cell structure or motility functions. Results from this study are an important step toward identifying interacting partners of the RAD51 paralogs and understanding the functional diversity of proteins that assist or regulate HR repair mechanisms.  相似文献   

3.
The RAD 51 protein, a eukaryotic homologue of Escherichia coli RecA, plays a significant role in both mitotic and meiotic homologous recombination. Here, we demonstrate that short-term silencing of the Rad51 gene by specific small interfering RNA (siRNA) that inhibits cell proliferation and reduces the viability of most cells. Cells with suppressed expression of Rad51 gene have altered cell cycles and accumulate in the S and G2 phases. Our findings show that the disruption of homologous recombination leads to cell death. However, some cells, e.g., MCF-7 cells, are insensitive to the suppression of Rad51 gene expression.  相似文献   

4.
Homologous recombination (HR) serves to repair DNA double-strand breaks and damaged replication forks and is essential for maintaining genome stability and tumor suppression. HR capacity also determines the efficacy of anticancer therapy. Hence, there is an urgent need to better understand all HR proteins and sub-pathways. An emerging protein that is critical for RAD51-mediated HR is RAD51-associated protein 1 (RAD51AP1). Although much has been learned about its biochemical attributes, the precise molecular role of RAD51AP1 in the HR reaction is not yet fully understood. The available literature also suggests that RAD51AP1 expression may be relevant for cancer development and progression. Here, we review the efforts that led to the discovery of RAD51AP1 and elaborate on our current understanding of its biochemical profile and biological function. We also discuss how RAD51AP1 may help to promote cancer development and why it could potentially represent a promising new target for therapeutic intervention.  相似文献   

5.
An essential mechanism for repairing DNA double‐strand breaks is homologous recombination (HR). One of its core catalysts is human RAD51 (hRAD51), which assembles as a helical nucleoprotein filament on single‐stranded DNA, promoting DNA‐strand exchange. Here, we study the interaction of hRAD51 with single‐stranded DNA using a single‐molecule approach. We show that ATP‐bound hRAD51 filaments can exist in two different states with different contour lengths and with a free‐energy difference of ~4 kBT per hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into a disassembly‐competent ADP‐bound configuration. In agreement with the single‐molecule analysis, we demonstrate the presence of two distinct protomer interfaces in the crystal structure of a hRAD51‐ATP filament, providing a structural basis for the two conformational states of the filament. Together, our findings provide evidence that hRAD51‐ATP filaments can exist in two interconvertible conformational states, which might be functionally relevant for DNA homology recognition and strand exchange.  相似文献   

6.
《Molecular cell》2023,83(4):523-538.e7
  1. Download : Download high-res image (192KB)
  2. Download : Download full-size image
  相似文献   

7.
DNA double-strand breaks (DSBs) are the major lethal lesion induced by ionizing radiation or by replication block. However, cells can take advantage of DSB-induced recombination in order to generate genetic diversity in physiological processes such as meiosis and V(D)J recombination. Two main alternative pathways compete for DSB repair: homologous recombination (HR) and non-homologous end-joining (NHEJ). This review will briefly present the mechanisms and the enzymatic complex for HR and NHEJ. The signalling of the DSB through the ATM pathway will be presented. Then, we will focus on the case of the RAD51 protein, which plays a pivotal role in HR and is conserved from bacteria to humans. Post-translational regulation of RAD51 is presented. Two contrasting situations are discussed: one with up-regulation (expression of the oncogene BCR/ABL) and one with a down-regulation (expression of the oncogene BCL-2) of RAD51, associated with apoptosis inhibition and tumour predisposition.  相似文献   

8.
DNA damage, malfunctions in DNA repair, and genomic instability are processes that intersect at the crossroads of carcinogenesis. Underscoring the importance of DNA repair in breast and ovarian tumorigenesis is the familial inherited cancer predisposition gene BRCA2. The role of BRCA2 in DNA double-strand break repair was first revealed based on its interaction with RAD51, a central player in homologous recombination. The RAD51 protein forms a nucleoprotein filament on single-stranded DNA, invades a DNA duplex, and initiates a search for homology. Once a homologous DNA sequence is found, the DNA is used as a template for the high-fidelity repair of the DNA break. Many of the biochemical features that allow BRCA2 to choreograph the activities of RAD51 have been elucidated and include: targeting RAD51 to single-stranded DNA while inhibiting binding to dsDNA, reducing the ATPase activity of RAD51, and facilitating the displacement of the single-strand DNA binding protein, Replication Protein A. These reinforcing activities of BRCA2 culminate in the correct positioning of RAD51 onto a processed DNA double-strand break and initiate its faithful repair by homologous recombination. In this review, I will address current biochemical data concerning the BRCA2 protein and highlight unanswered questions regarding BRCA2 function in homologous recombination and cancer.  相似文献   

9.
10.
《Molecular cell》2023,83(16):2925-2940.e8
  1. Download : Download high-res image (259KB)
  2. Download : Download full-size image
  相似文献   

11.
  相似文献   

12.
《Molecular cell》2022,82(19):3553-3565.e5
  1. Download : Download high-res image (145KB)
  2. Download : Download full-size image
  相似文献   

13.
乳腺癌易感蛋白2是由乳腺癌易感基因2编码的一种在维持哺乳动物细胞染色体的稳定及DNA损伤生物应答中发挥重要作用的蛋白质。文章通过介绍近几年来对乳腺癌易感蛋白2的结构研究,阐述其在双链DNA损伤修复中的作用模型及其在肿瘤抑制中的功能。  相似文献   

14.
15.
The BRC repeat is a structural motif in the tumor suppressor BRCA2 (breast cancer type 2 susceptibility protein), which promotes homologous recombination (HR) by regulating RAD51 recombinase activity. To date, the BRC repeat has not been observed in other proteins, so that its role in HR is inferred only in the context of BRCA2. Here, we identified a BRC repeat variant, named BRCv, in the RECQL5 helicase, which possesses anti-recombinase activity in vitro and suppresses HR and promotes cellular resistance to camptothecin-induced replication stress in vivo. RECQL5-BRCv interacted with RAD51 through two conserved motifs similar to those in the BRCA2-BRC repeat. Mutations of either motif compromised functions of RECQL5, including association with RAD51, inhibition of RAD51-mediated D-loop formation, suppression of sister chromatid exchange, and resistance to camptothecin-induced replication stress. Potential BRCvs were also found in other HR regulatory proteins, including Srs2 and Sgs1, which possess anti-recombinase activities similar to that of RECQL5. A point mutation in the predicted Srs2-BRCv disrupted the ability of the protein to bind RAD51 and to inhibit D-loop formation. Thus, BRC is a common RAD51 interaction module that can be utilized by different proteins to either promote HR, as in the case of BRCA2, or to suppress HR, as in RECQL5.  相似文献   

16.
Myotonic dystrophy type 2 (DM2) is caused by the extreme expansion of the repeating tetranucleotide CCTG*CAGG sequence from <30 repeats in normal individuals to approximately 11,000 for the full mutation in certain patients. This repeat is in intron 1 of the zinc finger protein 9 gene on chromosome 3q21. Since prior work demonstrated that CTG*CAG and GAA*TTC triplet repeats (responsible for DM1 and Friedreich's ataxia, respectively) can expand by genetic recombination, we investigated the capacity of the DM2 tetranucleotide repeats to also expand during this process. Both gene conversion and unequal crossing over are attractive mechanisms to effect these very large expansions. (CCTG*CAGG)n (where n=30, 75, 114 or 160) repeats showed high recombination crossover frequencies (up to 27-fold higher than the non-repeating control) in an intramolecular plasmid system in Escherichia coli. Furthermore, a distinct orientation effect was observed where orientation II (CAGG on the leading strand template) was more prone to recombine. Expansions of up to double the length of the tetranucleotide repeats were found. Also, the repeating tetranucleotide sequence was more prone to expansions (to give lengths longer than a single repeating tract) than deletions as observed for the CTG*CAG and GAA*TTC repeats. We determined that the DM2 tetranucleotide repeats showed a lower thermodynamic stability when compared to the DM1 trinucleotide repeats, which could make them better targets for DNA repair events, thus explaining their expansion-prone behavior. Genetic studies in SOS-repair mutants revealed high frequencies of recombination crossovers although the SOS-response itself was not induced. Thus, the genetic instabilities of the CCTG*CAGG repeats may be mediated by a recombination-repair mechanism that is influenced by DNA structure.  相似文献   

17.
《Molecular cell》2021,81(19):4008-4025.e7
  1. Download : Download high-res image (151KB)
  2. Download : Download full-size image
  相似文献   

18.
Breast cancer is the most common malignancy among women in developed countries, affecting more than a million women per year worldwide. Over the last decades, our increasing understanding of breast cancer biology has led to the development of endocrine agents against hormone receptor-positive tumors and targeted therapeutics against HER2-expressing tumors. However, no targeted therapy is available for patients with triple-negative breast cancer, lacking expression of hormone receptors and HER2. Overlap between BRCA1-mutated breast cancers and triple-negative tumors suggests that an important part of the triple-negative tumors may respond to therapeutics targeting BRCA1-deficient cells. Here, we review the features shared between triple-negative, basal-like and BRCA1-related breast cancers. We also discuss the development of novel therapeutic strategies to target BRCA1-mutated tumors and triple-negative tumors with BRCA1-like features. Finally, we highlight the utility of mouse models for BRCA1-mutated breast cancer to optimize (combination) therapy and to understand drug resistance.  相似文献   

19.
RAD51 forms nucleoprotein filaments to promote homologous recombination, replication fork reversal, and fork protection. Numerous factors regulate the stability of these filaments and improper regulation leads to genomic instability and ultimately disease including cancer. RADX is a single stranded DNA binding protein that modulates RAD51 filament stability. Here, we utilize a CRISPR-dependent base editing screen to tile mutations across RADX to delineate motifs required for RADX function. We identified separation of function mutants of RADX that bind DNA and RAD51 but have a reduced ability to stimulate its ATP hydrolysis activity. Cells expressing these RADX mutants accumulate RAD51 on chromatin, exhibit replication defects, have reduced growth, accumulate DNA damage, and are hypersensitive to DNA damage and replication stress. These results indicate that RADX must promote RAD51 ATP turnover to regulate RAD51 and genome stability during DNA replication.  相似文献   

20.
Rad51 serves to maintain and protect integrity of the genome through its actions in DNA repair and replication fork protection. The active form of Rad51 is a nucleoprotein filament consisting of chains of protomer units arranged linearly along single-stranded DNA. In a mutant screen using Ustilago maydis as an experimental system we identified a novel variant of Rad51, in which an amino acid change near the protomer–protomer interaction interface confers a strong trans dominant inhibitory effect on resistance to DNA damaging agents and proficiency in homologous recombination. Modeling studies of the mutated residue D161Y suggested that steric interference with surrounding residues was the likely cause of the inhibitory effect. Changes of two nearby residues, predicted from the modeling to minimize steric clashes, mitigated the inhibition of DNA repair. Direct testing of purified Rad51D161Y protein in defined biochemical reactions revealed it to be devoid of DNA-binding activity itself, but capable of interfering with Rad51WT in formation and maintenance of nucleoprotein filaments on single-stranded DNA and in DNA strand exchange. Rad51D161Y protein appears to be unable to self-associate in solution and defective in forming complexes with the U. maydis BRCA2 ortholog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号