首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We explored the effect of copper availability on the synthesis and trafficking of peptidylglycine alpha-amidating monooxygenase (PAM), an essential cuproenzyme whose catalytic domains function in the lumen of peptide-containing secretory granules. Corticotrope tumor cell lines expressing integral membrane and soluble forms of PAM were depleted of copper using bathocuproinedisulfonic acid or loaded with copper by incubation with CuCl(2). Depleting cellular copper stimulates basal secretion of soluble enzyme produced by endoproteolytic cleavage of PAM in secretory granules and transit of membrane PAM though the endocytic pathway and back into secretory granules. Unlike many cuproenzymes, lack of copper does not lead to instability of PAM. Copper loading decreases cleavage of PAM in secretory granules, secretion of soluble enzyme, and the return of internalized PAM to secretory granules. The trafficking and stability of the soluble, luminal domain of PAM and truncated membrane PAM lacking a cytosolic domain are not affected by copper availability. Taken together, our data demonstrate a role for copper-sensitive cytosolic machinery in directing endocytosed membrane PAM back to secretory granules or to a degradative pathway. The response of PAM to lack of copper suggests that it facilitates copper homeostasis.  相似文献   

2.
The biogenesis of multivesicular endosomes and the sorting of activated signaling receptors into multivesicular endosomes depend on soluble protein complexes (ESCRT complexes), which transiently interact with the receptor cargo and the endosomal membrane. Previously, it was shown that the transmembrane protein secretory carrier membrane protein (SCAMP) 3, which is present on endosomes, interacts with ESCRT components. Here, we report that SCAMP3 plays a role in the biogenesis of multivesicular endosomes. We find that SCAMP3 plays a role in EGF receptor sorting into multivesicular endosomes and in the formation of intralumenal vesicles within these endosomes in vitro and thus also controls EGF receptor targeting to lysosomes. We also find that SCAMP3 regulates the EGF-dependent biogenesis of multivesicular endosomes. We conclude that the transmembrane protein SCAMP3 has a positive role in sorting into and budding of intralumenal vesicles and thereby controls the process of multivesicular endosome biogenesis.  相似文献   

3.
The ultrastructure of the parathyroid glands of adult Japanese lizards (Takydromus tachydromoides) in the spring and summer season was examined. The parenchyma of the gland consists of chief cells arranged in cords or solid masses. Many chief cells contain numerous free ribosomes and mitochondria, well-developed Golgi complexes, a few lysosome-like bodies, some multivesicular bodies and relatively numerous lipid droplets. The endoplasmic reticulum is mainly smooth-surfaced. Cisternae of the rough endoplasmic reticulum are distributed randomly in the cytoplasm. Small coated vesicles of 700-800 Å in diameter are found occasionally in the cytoplasm, especially in the Golgi region. The chief cells contain occasional secretory granules of 150-300 nm in diameter that are distributed randomly in the cytoplasm and lie close to the plasma membrane. Electron dense material similar to the contents of the secretory granules is observed in the enlarged intercellular space. These findings suggest that the secretory granules may be discharged into the intercellular space by an eruptocrine type of secretion. Coated vesicles (invaginations) connected to the plasma membrane and smooth vesicles arranged in a row near the plasma membrane are observed. It is suggested that such coated vesicles may take up extracellular proteins. The accumulation of microfilaments is sometimes recognized. Morphological evidence of synthetic and secretory activities in the chief cells suggests active parathyroid function in the Japanese lizard during the spring and summer season.  相似文献   

4.
The exocytotic exposure and retrieval of an antigen of chromaffin granule membranes were studied with chromaffin cells isolated from bovine adrenal medulla. Cells were incubated with an antiserum against glycoprotein III followed by fluorescein- or gold-labeled anti-IgG. Immunofluorescence on the cell surface was present in a patchy distribution irrespective of whether bivalent antibodies or Fab fragments were used. During subsequent incubation these fluorescent membrane patches were internalized within 45 min. At the ultrastructural level immunogold-labeled patches were present on the surface of stimulated cells. During incubation (5 min to 6 h) these immunolabeled membrane patches became coated, giving rise to coated vesicles and finally to smooth vesicles. These latter vesicles were found spread throughout the cytoplasm including the Golgi region, but Golgi stacks did not become labeled. Part of the immunolabel was transferred to multivesicular bodies, which probably represent a lysosomal pathway. 30 min after incubation immunolabel was also found in electron-dense vesicles apparently representing newly formed chromaffin granules. After 6 h of incubation immunolabel was found in vesicles indistinguishable from mature chromaffin granules. These results provide direct evidence that after exocytosis membranes of chromaffin granules are selectively retrieved from the plasma membrane and are partly recycled to newly formed chromaffin granules, providing a shuttle service from the Golgi region to the plasma membrane.  相似文献   

5.
Peptidylglycine alpha-amidating monooxygenase (PAM), an integral membrane protein essential for the biosynthesis of amidated peptides, was used to assess the role of cytosolic acidic clusters in trafficking to regulated secretory granules. Casein kinase II phosphorylates Ser(949) and Thr(946) of PAM, generating a short, cytosolic acidic cluster. P-CIP2, a protein kinase identified by its ability to interact with several juxtamembrane determinants in the PAM cytosolic domain, also phosphorylates Ser(949). Antibody specific for phospho-Ser(949)-PAM-CD demonstrates that a small fraction of the PAM-1 localized to the perinuclear region bears this modification. Pituitary cell lines expressing PAM-1 mutants that mimic (TS/DD) or prevent (TS/AA) phosphorylation at these sites were studied. PAM-1 TS/AA yields a lumenal monooxygenase domain that enters secretory granules inefficiently and is rapidly degraded. In contrast, PAM-1 TS/DD is routed to regulated secretory granules more efficiently than wild-type PAM-1 and monooxygenase release is more responsive to secretagogue. Furthermore, this acidic cluster affects exit of internalized PAM-antibody complexes from late endosomes; internalized PAM-1 TS/DD accumulates in a late endocytic compartment instead of the trans-Golgi network. The increased ability of solubilized PAM-1 TS/DD to aggregate at neutral pH may play an important role in its altered trafficking.  相似文献   

6.
Monoclonal antibody (MAb) 170-5 was generated to the secretory granule membrane of rat parotid acinar cells. The MAb recognized integral membrane glycoproteins (SG 170 antigen) localized on the luminal side of the secretory granules with N-linked carbohydrates, molecular weights 92, 84, 76, 69, and 65 KD. Immunohistochemical studies indicated that the SG 170 antigen was found in the secretory granules of both exocrine and endocrine cells and in the lysosomes of various cells in the rat. Immunoelectron microscopy with immunogold revealed that the antigen was present on the membrane of the secretory granules, lysosomes, the Golgi vesicles, and condensing vacuoles in pancreatic and parotid acinar cells and in AR42J rat pancreatic tumor cells; the Golgi stacks exhibited no immunoreaction. The common localization of the antigen in the secretory granule membranes indicated that this antigen may play an essential role in regulated secretion. Employing HRP-labeled MAb 170-5, we followed the retrieval of the antigen after exocytosis in AR42J cells. The MAb was internalized specifically with antigen-mediated endocytosis. It was transported to endosomes, subsequently to the trans-Golgi network, and then packaged into secretory granules. However, the Golgi stacks revealed no uptake of the labeled antibody.  相似文献   

7.
Activation of the teleost (Brachydanio) fish egg includes the exocytosis of cortical granules, the construction of a mosaic surface consisting of the unfertilized egg plasma membrane and the limiting membranes of the cortical granules, and the appearance of coated and smooth vesicles in the cytoplasm (Donovan and Hart, '82). Unfertilized and activated eggs were incubated in selected extracellular tracers to (1) determine experimentally if cortical granule exocytosis was coupled with the endocytosis of membrane during the cortical reaction, and (2) establish the intracellular pathway(s) by which internalized vesicles were processed. Unfertilized eggs incubated in dechlorinated tap water or Fish Ringer's solution containing either horseradish peroxidase (HRP; 10 mg/ml), native ferritin (12.5 mg/ml), or cationized ferritin (12.5 mg/ml) were activated as judged by cortical granule breakdown and elevation of the chorion. Cells treated with HRP and native ferritin exhibited a delay in cortical granule exocytosis when compared with water-activated eggs lacking the tracer. Each tracer was internalized through the formation of a coated vesicle from a coated pit. Since coated pits appeared to be topographically restricted to the perigranular membrane domain of the mosaic egg surface, their labeling, particularly with cationized ferritin, strongly suggested that the retrieved membrane was of cortical granule origin. Cationized ferritin and concanavalin A (Con A) coupled with either hemocyanin or ferritin labeled the surface of the unactivated egg and both domains of the mosaic egg surface. Transformation of the deep evacuated cortical granule crypt into later profiles of exocytosis was accompanied by increased Con A binding. Within activated egg cortices, HRP reaction product, native ferritin, and cationized ferritin were routinely localized in smooth vesicles, multivesicular bodies, and autophagic vacuoles. Occasionally, each tracer was found in small coated vesicles adjacent to the Golgi and within Golgi cisternae. The intracellular distribution of HRP, native ferritin, and cationized ferritin suggests that internalized membrane is primarily processed by organelles of the lysosomal compartment. A second and less significant pathway is the Golgi complex.  相似文献   

8.
Phogrin (IA2-beta) is an integral membrane protein of dense-core vesicles in neuroendocrine cells. We have examined the recycling of endogenous phogrin following exocytosis in insulin secreting Min6 beta-cells by monitoring stimulus dependent-uptake of antibodies directed against the lumenal domain of the protein. While low levels of internalized phogrin accumulated in LAMP1-positive lysosomes, more than 35% of internalized phogrin recycled back to an insulin-positive compartment and could return to the cell surface during a second exocytic stimulation. The recycling phogrin transited a syntaxin 6-positive compartment but did not appear to go through the TGN38-positive trans Golgi network. The results suggest a model in which secretory membrane components can recycle from the endosomal system to immature secretory granules without interaction with the major portion of the TGN.  相似文献   

9.
The nature and content of lytic bodies and the localization of acid phosphatase (AcPase) activity were investigated in mammotrophic hormone-producing cells (MT) from rat anterior pituitary glands. MT were examined from lactating rats in which secretion of MTH1 was high and from postlactating rats in which MTH secretion was suppressed by removing the suckling young. MT from lactating animals contained abundant stacks of rough-surfaced ER, a large Golgi complex with many forming secretory granules, and a few lytic bodies, primarily multivesicular bodies and dense bodies. MT from postlactating animals, sacrificed at selected intervals up to 96 hr after separation from their suckling young, showed (a) progressive involution of the protein synthetic apparatus with sequestration of ER and ribosomes in autophagic vacuoles, and (b) incorporation of secretory granules into multivesicular and dense bodies. The content of mature granules typically was incorporated into dense bodies whereas that of immature granules found its way preferentially into multivesicular bodies. The secretory granules and cytoplasmic constituents segregated within lytic bodies were progressively degraded over a period of 24 to 72 hr to yield a common residual body, the vacuolated dense body. In MT from lactating animals, AcPase reaction product was found in lytic bodies, and in several other sites not usually considered to be lysosomal in nature, i.e., inner Golgi cisterna and associated vesicles, and around most of the immature, and some of the mature secretory granules. In MT from postlactating animals, AcPase was concentrated in lytic bodies; reaction product and incorporated secretory granules were frequently recognizable within the same multivesicular or dense body which could therefore be identified as "autolysosomes" connected with the digestion of endogenous materials. Several possible explanations for the occurrence of AcPase in nonlysosomal sites are discussed. From the findings it is concluded that, in secretory cells, lysosomes function in the regulation of the secretory process by providing a mechanism which takes care of overproduction of secretory products.  相似文献   

10.
Little is known about the molecular mechanism of recycling of intracellular receptors and lipid raft-associated proteins. Here, we have investigated the recycling pathway and internalization mechanism of a transmembrane, lipid raft-associated intracellular prohormone sorting receptor, carboxypeptidase E (CPE). CPE is found in the trans-Golgi network (TGN) and secretory granules of (neuro)endocrine cells. An extracellular domain of the IL2 receptor alpha-subunit (Tac) fused to the transmembrane domain and cytoplasmic tail of CPE (Tac-CPE25) was used as a marker to track recycling of CPE. We show in (neuro)endocrine cells, that upon stimulated secretory granule exocytosis, raft-associated Tac-CPE25 was rapidly internalized from the plasma membrane in a clathrin-independent manner into early endosomes and then transported through the endocytic recycling compartment to the TGN. A yeast two-hybrid screen and in vitro binding assay identified the CPE cytoplasmic tail sequence S472ETLNF477 as an interactor with active small GTPase ADP-ribosylation factor (ARF) 6, but not ARF1. Expression of a dominant negative, inactive ARF6 mutant blocked this recycling. Mutation of residues S472 or E473 to A in the cytoplasmic tail of CPE obliterated its binding to ARF6, and internalization from the plasma membrane of Tac-CPE25 mutated at S472 or E473 was significantly reduced. Thus, CPE recycles back to the TGN by a novel mechanism requiring ARF6 interaction and activity.  相似文献   

11.
A key feature of the regulated secretory pathway in neuroendocrine cells is lumenal pH, which decreases between trans-Golgi network and mature secretory granules. Because peptidylglycine alpha-amidating monooxygenase (PAM) is one of the few membrane-spanning proteins concentrated in secretory granules and is a known effector of regulated secretion, we examined its sensitivity to pH. Based on antibody binding experiments, the noncatalytic linker regions between the two enzymatic domains of PAM show pH-dependent conformational changes; these changes occur in the presence or absence of a transmembrane domain. Integral membrane PAM-1 solubilized from rat anterior pituitary or from transfected AtT-20 cells aggregates reversibly at pH 5.5 while retaining enzyme activity. Over 35% of the PAM-1 in anterior pituitary extracts aggregates at pH 5.5, whereas only about 5% aggregates at pH 7.5. PAM-1 recovered from secretory granules and endosomes is highly responsive to low pH-induced aggregation, whereas PAM-1 recovered from a light, intracellular recycling compartment is not. Mutagenesis studies indicate that a transmembrane domain is necessary but not sufficient for low pH-induced aggregation and reveal a short lumenal, juxtamembrane segment that also contributes to pH-dependent aggregation. Taken together, these results demonstrate that several properties of membrane PAM serve as indicators of granule pH in neuroendocrine cells.  相似文献   

12.
Summary Ferritin-concanavalin A (Fer-Con A) was used to label the apical plasma membrane of the lactating cell to determine whether membrane internalization takes place. Rat glands were infused in vivo via the teat with 0.2 mg of Fer-Con A in 0.2 ml tris buffer (pH 7.0) containing 0.1% trypan blue, the latter acting as a marker of the infusate. Tissues were obtained from separate animals 5, 10 and 60 min postinfusion. Fer-Con A was seen in alveolar lumina bound to the outer surfaces of apical plasma membrane, microvilli and milk fat globules. It was observed within lactating cells on the inner membrane surfaces of endocytotic vesicles, Golgi cisternae, and secretory vesicles containing casein micelles, and in multivesicular bodies and lysosomes. Internalization of the ferritin-lectin conjugate into casein-containing secretory vesicles was detectable in the 5-min postinfusion tissue. Lysosomes were the only structures in control tissue that contained particles bearing some resemblance to Fer-Con A. The data provide evidence that apical plasma membrane is internalized and distributed to a number of intracellular compartments.  相似文献   

13.
After internalization, ubiquitinated signaling receptors are delivered to early endosomes. There, they are sorted and incorporated into the intralumenal invaginations of nascent multivesicular bodies, which function as transport intermediates to late endosomes. Receptor sorting is achieved by Hrs—an adaptor-like protein that binds membrane PtdIns3P via a FYVE motif—and then by ESCRT complexes, which presumably also mediate the invagination process. Eventually, intralumenal vesicles are delivered to lysosomes, leading to the notion that EGF receptor sorting into multivesicular bodies mediates lysosomal targeting. Here, we report that Hrs is essential for lysosomal targeting but dispensable for multivesicular body biogenesis and transport to late endosomes. By contrast, we find that the PtdIns3P-binding protein SNX3 is required for multivesicular body formation, but not for EGF receptor degradation. PtdIns3P thus controls the complementary functions of Hrs and SNX3 in sorting and multivesicular body biogenesis.  相似文献   

14.
This study was performed to clarify the fate of membrane constituents internalized from the apical domain in secretory cells, in particular their possible recycling and the compartments involved in it. Glycoproteins of the apical membrane of seminal vesicle secretory cells from guinea-pig were covalently labeled in vitro (0°C, 20 min) with 3H-galactose and the epithelium incubated for 15 min (37°C, first incubation) to allow endocytosis. The label which was not internalized was then exposed to enzymatic hydrolysis (0°C, 30 min) and the epithelium re-incubated to allow membrane movement for 15 and 30 min (37°C, 2nd incubation). After each step of the protocol, tissue pieces were fixed and processed for electron microscope autoradiography and the results studied by morphometric analysis. Following labeling, 99% of the silver grains were associated with the apical domain of the cell membrane (AD). After the 1st incubation at 37°C, 30° of the grains were inside the cells in association with the cytoplasmic vesicles (Cyt ves), secretory vacuoles (SV), Golgi vesicles (GV), Golgi cisternae (GC), multivesicular bodies (MVB), lysosomes (LYS), and the cell membrane basolateral domain (BLD). About 58% of non-internalized radioactivity was removed by hydrolysis. During the 2nd incubation at 37°C the concentration of label increased in BLD and LYS, decreased in SV and MVB, and fluctuated in GC, GV and AD. The distribution of grains observed at 15 min, as compared using the χ-square test, was highly significantly different from that expected without recycling. The results show that cell membrane glycoproteins internalized at the cell apex recycle back to the membrane apical domain and are consistent with the involvement of GC and SV in the recycling pathway. Membrane shuttle between the apical and basolateral domains of the cell membrane is also suggested by these observations.  相似文献   

15.
Summary Localization of GnRH receptors in rat pituitary gonadotropes was studied by use of 125I-[azidobenzoyl-D-Lys6]GnRH which, upon photolysis, is covalently bound to the receptor molecule. Using high resolution autoradiography, it was found that, after a 90-min incubation of the analog with pituitary cells at 4° C, 93% of the silver grains were associated with the plasma membrane of the gonadotropes. After 45-min incubation of the cells at 37° C, clustering and internalization of the receptor-bound GnRH analog were evident. Silver grains were associated with coated pits, intracellular vesicles, Golgi complexes, lysosome-like structures and secretory granules. The data indicate that receptor-bound GnRH agonist is internalized, at least in part, via coated pits and is subsequently routed to lysosomes where degradation of the hormone-receptor complex may occur. The presence of a considerable amount of silver grains associated with secretory granules may suggest that some of the internalized receptor molecules can escape degradation and be recycled to the cell membrane.  相似文献   

16.
Decreasing luminal pH is thought to play a role in the entry of newly synthesized and endocytosed membrane proteins into secretory granules. The two catalytic domains of peptidylglycine α-amidating monooxygenase (PAM), a type I integral membrane protein, catalyze the sequential reactions that convert peptidyl-Gly substrates into amidated products. We explored the hypothesis that a conserved His-rich cluster (His-Gly-His-His) in the linker region connecting its two catalytic domains senses pH and affects PAM trafficking by mutating these His residues to Ala (Ala-Gly-Ala-Ala; H3A). Purified recombinant wild-type and H3A linker peptides were examined using circular dichroism and tryptophan fluorescence; mutation of the His cluster largely eliminated its pH sensitivity. An enzymatically active PAM protein with the same mutations (PAM-1/H3A) was expressed in HEK293 cells and AtT-20 corticotrope tumor cells. Metabolic labeling followed by immunoprecipitation revealed more rapid loss of newly synthesized PAM-1/H3A than PAM-1; although release of newly synthesized monofunctional PHM/H3A was increased, release of soluble bifunctional PAM/H3A, a product of the endocytic pathway, was decreased. Surface biotinylation revealed rapid loss of PAM-1/H3A, with no detectable return of the mutant protein to secretory granules. Consistent with its altered endocytic trafficking, little PAM-1/H3A was subjected to regulated intramembrane proteolysis followed by release of a small nuclear-targeted cytosolic fragment. AtT-20 cells expressing PAM-1/H3A adopted the morphology of wild-type AtT-20 cells; secretory products no longer accumulated in the trans-Golgi network and secretory granule exocytosis was more responsive to secretagogue.  相似文献   

17.
In the region of the base of the intestinal crypts undifferentiated goblet cells display a configuration and constellation of organelles and membrane structures that are indicative of their importance for function. These images at this stage of development deliver a scenario of the mechanism of secretory granule production: aggregates of protein vesicles from the "transitional elements" (PALADE) of the granular endoplasmic reticulum are, so to speak, rolled up on the trans side of the Golgi apparatus by inversion of peripheral membrane segments of the innermost Golgi lamellae, thereby forming corpuscles. The origin of the capsulated vacuoles, which contain vesicles as single elements or as conglomerates, is well established. Their capsule consists of a trilaminar external and external and internal membrane; between them lies condensed material of the Golgi apparatus. In the opinion of the present author, the development of the ensheathed vacuoles represents a basic, more general mechanism. In contrast, the further steps of synthesis, for the formation of secretory granules, are more heterogeneous. Condensation of the vesicles and the inner capsular membrane results in the formation of a prosecretory granule, which in the basic element in the process of secretory granule production. The prosecretory granules develop singly or by fusion with other granules to give primary secretory granules. The complexity of this mechanism of secretory granule formation, however, becomes evident when considering the apposition of capsulated vacuoles and prosecretory--primary--secondary secretory granules, of prosecretory and primary secretory granules as well as prosecretory granules and secondary secretory granules. Generally, primary granules show a tendency to become secondary secretory granules or to fuse with them. During maturation of the goblet cells the secretory granules fuse to form larger mucous bodies in the theca by fusion of the laminae of the membranes; a final product, there is a homogeneous mucous mass devoid of membranes.  相似文献   

18.
Summary Correlative morphological and physiological analysis was carried out in order to clarify the role of somatostatin in the inhibition of the secretion of growth hormone (GH) from somatotrophs of the rat anterior pituitary gland in vivo. Transmission electron microscopy combined with immunogold labelling showed an increased number of exocytotic GH-containing secretory granules in somatotrophs fixed between 2 and 10 min after injection of GH-releasing factor (GRF). Injection of GRF also induced the appearance of immunopositive material in cisternae of the Golgi apparatus, many coated vesicles and multivesicular bodies. Microtubules were observed more frequently throughout the cytoplasm, particularly in and near the Golgi region. At 2 and 10 min after injection of somatostatin (SRIF), both the number of exocytotic figures in the somatotrophs previously stimulated by GRF and the amount of radioimmunoassayable GH in the plasma were clearly decreased. Undulation of the plasma membrane (PM) induced by GRF rapidly disappeared, and the number of granules just beneath the plasma membrane was significantly reduced. After injection of SRIF, parallel bundles of microfilaments were often observed in the space between the granules and the plasma membrane. SRIF did not cause a noticeable decrease in the amount of immunopositive material, coated vesicles and multivesicular bodies in the Golgi areas or any significant changes in the distribution of microtubules. SRIF therefore appears to inhibit hormone release mainly at the level of the plasma membrane, probably through changes in the distribution of microfilaments.  相似文献   

19.
Melanosomes are tissue-specific organelles within which melanin is synthesized and stored. The melanocyte-specific glycoprotein Pmel17 is enriched in the lumen of premelanosomes, where it associates with characteristic striations of unknown composition upon which melanin is deposited. However, Pmel17 is synthesized as an integral membrane protein. To clarify its physical linkage to premelanosomes, we analyzed the posttranslational processing of human Pmel17 in pigmented and transfected nonpigmented cells. We show that Pmel17 is cleaved in a post-Golgi compartment into two disulfide-linked subunits: a large lumenal subunit, M alpha, and an integral membrane subunit, M beta. The two subunits remain associated intracellularly, indicating that detectable M alpha remains membrane bound. We have previously shown that Pmel17 accumulates on intralumenal membrane vesicles and striations of premelanosomes in pigmented cells. In transfected nonpigmented cells Pmel17 associates with the intralumenal membrane vesicles of multivesicular bodies; cells overexpressing Pmel17 also display structures resembling premelanosomal striations within these compartments. These results suggest that Pmel17 is sufficient to drive the formation of striations from within multivesicular bodies and is thus directly involved in the biogenesis of premelanosomes.  相似文献   

20.
The formation of mature secretory granules is essential for proper storage and regulated release of hormones and neuropeptides. In pancreatic β cells, cholesterol accumulation causes defects in insulin secretion and may participate in the pathogenesis of type 2 diabetes. Using a novel cholesterol analog, we show for the first time that insulin granules are the major sites of intracellular cholesterol accumulation in live β cells. This is distinct from other, non‐secretory cell types, in which cholesterol is concentrated in the recycling endosomes and the trans‐Golgi network. Excess cholesterol was delivered specifically to insulin granules, which caused granule enlargement and retention of syntaxin 6 and VAMP4 in granule membranes, with concurrent depletion of these proteins from the trans‐Golgi network. Clathrin also accumulated in the granules of cholesterol‐overloaded cells, consistent with a possible defect in the last stage of granule maturation, during which clathrin‐coated vesicles bud from the immature granules. Excess cholesterol also reduced the docking and fusion of insulin granules at the plasma membrane. Together, the data support a model in which cholesterol accumulation in insulin secretory granules impairs the ability of these vesicles to respond to stimuli, and thus reduces insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号