首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Some probe-foraging birds locate their buried prey by detecting mechanical vibrations in the substrate using a specialized tactile bill-tip organ comprising mechanoreceptors embedded in densely clustered pits in the bone at the tip of their beak. This remarkable sensory modality is known as ‘remote touch’, and the associated bill-tip organ is found in probe-foraging taxa belonging to both the palaeognathous (in kiwi) and neognathous (in ibises and shorebirds) clades of modern birds. Intriguingly, a structurally similar bill-tip organ is also present in the beaks of extant, non-probing palaeognathous birds (e.g. emu and ostriches) that do not use remote touch. By comparison with our comprehensive sample representing all orders of extant modern birds (Neornithes), we provide evidence that the lithornithids (the most basal known palaeognathous birds which evolved in the Cretaceous period) had the ability to use remote touch. This finding suggests that the occurrence of the vestigial bony bill-tip organ in all modern non-probing palaeognathous birds represents a plesiomorphic condition. Furthermore, our results show that remote-touch probe foraging evolved very early among the Neornithes and it may even have predated the palaeognathous–neognathous divergence. We postulate that the tactile bony bill-tip organ in Neornithes may have originated from other snout tactile specializations of their non-avian theropod ancestors.  相似文献   

2.
Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation.  相似文献   

3.
Variations in visual field topography among birds have been interpreted as adaptations to the specific perceptual challenges posed by the species’ foraging ecology. To test this hypothesis we determined visual field topography in four bird species which have different foraging ecologies but are from the same family: Puna Ibis Plegadis ridgwayi (probes for prey in the soft substrates of marsh habitats), Northern Bald Ibis Geronticus eremita (surface pecks for prey in dry terrestrial habitats), African Spoonbill Platalea alba and Eurasian Spoonbill Platalea leucorodia (bill‐sweeps for prey in shallow turbid waters). All four species employ tactile cues provided by bill‐tip organs for prey detection. We predicted that the visual fields of these species would show general features similar to those found in other birds whose foraging is guided by tactile cues from the bill (i.e. bill falling outside the frontal binocular field and comprehensive visual coverage of the celestial hemisphere). However, the visual fields of all four species showed general features characteristic of birds that take food directly in the bill under visual guidance (i.e. a narrow and vertically long binocular field in which the projection of the bill tip is approximately central and with a blind area above and behind the head). Visual fields of the two spoonbills were very similar but differed from those of the ibises, which also differed between themselves. In the spoonbills, there was a blind area below the bill produced by the enlarged spatulate bill tip. We discuss how these differences in visual fields are related to the perceptual challenges of these birds’ different foraging ecologies, including the detection, identification and ingestion of prey. In particular we suggest that all species need to see binocularly around the bill and between the opened mandibles for the identification of caught prey items and its transport to the back of the mouth. Our findings support the hypothesis that sensory challenges associated with differences in foraging ecology, rather than shared ancestry or the control of locomotion, are the main determinants of variation in visual field topography in birds.  相似文献   

4.
Research on cetacean foraging ecology is central to our understanding of their spatial and behavioral ecology. Yet, functional mechanisms by which cetaceans detect prey across different scales remain unclear. Here, I postulate that cetaceans utilize a scale‐dependent, multimodal sensory system to assess and increase prey encounters. I review the literature on cetacean sensory systems related to foraging ecology, and hypothesize the effective scales of each sensory modality to inform foraging opportunities. Next, I build two “scale‐of‐senses” schematics for the general groups of dolphins and baleen whales. These schematics illustrate the hypothetical interchange of sensory modalities used to locate and discriminate prey at spatial scales ranging from 0 m to 1,000 km: (1) vision, (2) audition (sound production and sound reception), (3) chemoreception, (4) magnetoreception, and somatosensory perception of (5) prey, or (6) oceanographic stimuli. The schematics illustrate how a cetacean may integrate sensory modalities to form an adaptive foraging landscape as a function of distance to prey. The scale‐of‐senses schematic is flexible, allowing for case‐specific application and enhancement with improved cetacean sensory data. The framework serves to improve our understanding of functional cetacean foraging ecology, and to develop new hypotheses, methods, and results regarding how cetaceans forage at multiple scales.  相似文献   

5.
《新西兰生态学杂志》2011,35(3):209-219
Kiwi possess many unusual features that make them interesting subjects for behavioural study. However, their nocturnal, cryptic nature has meant that studies to date rely on data collected indirectly. Infrared technology has enabled us to observe kiwi directly and here we present the first study of wild brown kiwi (Apteryx mantelli) behaviour by direct observation. We used handheld infrared video cameras to obtain c.?6 hours of video footage of kiwi over 19 months. Kiwi used native forest and exotic pasture habitats while active at night and spent most of their time foraging (75%). Prey capture rates were significantly higher in pasture than forest. The remaining 25% of time was spent walking, vigilant, engaged in comfort behaviours, escaping disturbance, and investigating obstacles. Direct social and courtship interactions were observed rarely. The senses of hearing, olfaction and touch seemed most important to kiwi. Touch was used for investigating terrain and negotiating obstacles. Hearing was used in response to sounds made by observers, conspecifics and other sources. Olfactory search behaviours (OSBs) were used in the direction of these sounds, and olfaction was also apparently used to assess odours on the ground. We observed no behaviours that appeared to be guided by vision. Behavioural repertoire size and diversity increased in winter, due to increases in OSBs towards conspecifics and other odour sources, and rarely observed behaviours. Prey capture rates also increased near-significantly in winter and microhabitat use was more diverse. Female kiwi at our study site had 30% longer bills than males, and probed into soil substrates on average 30% deeper. No other fine-scale behaviours that might reduce competition between kiwi sexes were observed.  相似文献   

6.
Cone snails, predatory marine gastropods, have developed a specialized prey capture method in which a long, distensible proboscis is used to identify prey and inject venom via a hydraulically propelled hollow radular tooth. Using brightfield, epifluorescence, confocal, and transmission and scanning electron microscopy, we describe the morphology of ciliated sensory structures concentrated on the tip of the proboscis. The number and morphology of these sensory papillae are linked to the type of preferred prey: cone snails feeding on worms and mollusks have short, cone or finger‐shaped papillae, whereas fish‐hunting cone snails have long tubular papillae in addition to short conical papillae. Sensory papillae are well positioned to provide information necessary to locate, identify, and dispatch prey. Proboscis tips and their sensory papillae regenerated within 10 d following experimental ablation, and snails with regenerated proboscis tips were able to locate and envenomate prey. The remarkable intrageneric variation found in the morphology of these sensory structures is probably linked to the specialized prey that cone snail species have evolved to hunt.  相似文献   

7.
Especially in birds, it is widely found that the size of individual prey items follows the size of the instruments of prey capture, handling and processing, i.e. bill size. In fact, this is the natural history basis of major discoveries on adaptive evolution in the face of changing food resources. In some birds, e.g. the molluscivore shorebirds ingesting hard‐shelled prey, most of the prey processing takes place within the digestive tract. This study of a salvaged sample of actively feeding great knots Calidris tenuirostris accidentally drowned in fishing nets in northern China, is the first documentation of diet selection at the level of the individual in previously well‐studied molluscivore shorebirds. Diet composition was not associated with the length of the bill, but with the mass of the muscular gizzard. Gizzard mass, which unlike bill length is a phenotypically flexible trait, enables great knots to adjust to changing food resources as an individual, i.e. instantly responding to the food on offer. For migratory species like great knots which rely on seasonal sequences of interdistant feeding areas offering prey with a variety of characteristics, the capacity to individually adjust appears a key adaptation.  相似文献   

8.
Two types of surface tactile epidermal formations are identified in the bill tip organ of 11 species of lamellirostral birds. Their density arrangement and ratio in the mandible and maxilla are greater in dabbling ducks (filter-feeder species) than in herbivorous and in actively pursuing species. The length and proportions of the connective tissue tubules enclosing the encapsulated mechanoreceptors in filter-feeder species differ significantly from the others. The vibroreceptor endings are significantly more numerous in filter-feeder species and the touch endings in nonfiltering ones. The latter are smaller in the filter-feeder species. Within the walls of the connective tissue tubules, tactile epitheliocytes are registered for the first time. The structure of keratinocytes separating epidermal papillae of the bill tip organ apparently ensures their mobility. The bill tip organ is probably involved in the communication process of waterfowl.  相似文献   

9.
Sexual size dimorphism can result in reduced competition if it leads males and females to use different foraging techniques or consume different prey items. Among woodpeckers, differences between males and females in bill length are common and may explain foraging differences in this family of birds. Northern Flickers (Colaptes auratus) are ground‐foraging woodpeckers that specialize on ants. However, the overall contribution of ants to their diet and the proportions of particular ant genera in their diet are not well known. To understand the relationship between bill morphology and the consumption of prey items, we compared the bill length and bill width of male and female flickers. We then collected and analyzed fecal samples from breeding flickers (N = 40 males, 33 females) at a study site in central British Columbia, Canada. Bills of male flickers were significantly longer (4%) and wider (5%) than those of females. Of 11 prey types identified, ants made up over 99% of their diet, and the abundance and composition of ant taxa in the diet did not differ between the sexes. We found significant year and time of season effects, with the abundance of Tapinoma sessile and Lasius spp. increasing from May to the end of June and differing between years. This difference in diet composition between years may have been due to changes in the abundance or accessibility of certain ant taxa related to differences in vegetation structure or weather. Nine ant taxa were consumed by flickers and the four most common were T. sessile, Lasius spp.,Myrmica spp., and the Formica fusca species group. The degree of dimorphism in bill size of male and female Northern Flickers in our study was smaller than reported for several species of arboreal‐foraging woodpeckers, suggesting that bill size of ground‐foraging woodpeckers may not be strongly linked to niche separation at the level of prey selection.  相似文献   

10.
In birds, the position and extent of the region of binocular vision appears to be determined primarily by feeding ecology. Of prime importance is the degree to which vision is used for the precise control of bill position when foraging. Skimmers (Rynchops, Rynchopidae, Charadriiformes) exhibit a unique foraging behaviour and associated structural adaptations. When foraging they fly low and straight over water with the mouth open and the mandible partially submerged. Items that are hit by the lower mandible are grasped by a rapid reflex bill closure. It is believed that this unique ‘skimming’ foraging technique is guided by tactile rather than visual cues. It is predicted therefore that the visual fields of skimmers will have similar topography to those of other tactile feeding birds. We determined retinal visual fields in Black Skimmers Rynchops niger using an ophthalmoscopic reflex technique. Contrary to expectation the visual fields of Black Skimmers are not like those of other tactile feeders. They show high similarity with those of birds that feed by precision‐pecking. The projection of the bill tip when the mouth is closed and when open (as in skimming) falls within the frontal binocular field and there is an extensive blind area above and behind the head. We argue that this visual field topography functions to achieve accurate bill positioning with respect to the water surface when skimming and, because foraging skimmers cannot determine the identity of what they are seizing as they skim, to permit the visual identification of prey items held between the mandibles after they have been taken from the water surface. When skimming, only a small portion of the binocular field, approximately 5° wide and extending 5° above the horizontal, looks in the direction of travel. The small size of this forward‐facing region of binocularity in skimmers suggests that control of locomotion in birds does not necessarily require extensive binocularity in the direction of travel.  相似文献   

11.
Parrots are exceptional among birds for their high levels of exploratory behaviour and manipulatory abilities. It has been argued that foraging method is the prime determinant of a bird's visual field configuration. However, here we argue that the topography of visual fields in parrots is related to their playful dexterity, unique anatomy and particularly the tactile information that is gained through their bill tip organ during object manipulation. We measured the visual fields of Senegal parrots Poicephalus senegalus using the ophthalmoscopic reflex technique and also report some preliminary observations on the bill tip organ in this species. We found that the visual fields of Senegal parrots are unlike those described hitherto in any other bird species, with both a relatively broad frontal binocular field and a near comprehensive field of view around the head. The behavioural implications are discussed and we consider how extractive foraging and object exploration, mediated in part by tactile cues from the bill, has led to the absence of visual coverage of the region below the bill in favour of more comprehensive visual coverage above the head.  相似文献   

12.
Individual feeding specialisation in shorebirds is reviewed, and the possilble mechanisms involved in such specialisations. Any specialisation can he seen as an individual strategy, and the optimum strategy for any given individual will be conditional upon its specific priorities and constraints. Some specialisations are related to social status and some to individual skills. Some are also probably frequency-dependent. However, most shorebird specialisations are constrained to a large extent by individual morphology, particularly bill morphology. For example, larger birds are able to handle larger prey, and birds with longer bills are able to feed on more deeply buried prey. Sex differences in bill length are uncommon in the Charardriidae, which are surface peckers, but are common in the Scolopacidae, which feed by probing in soft substrates. Sex differences in bill morphology are frequently associated with sex differences in feeding specialisation. There is evidence that different feeding specialisations are associated with different payoffs, in which case the probability of failing to reproduce or of dying will not be distributed equally throughout the population. I consider the population consequences of such feeding specialisations, particularly the different risks and benefits associated with different habitats or diets. I also consider the way in which individuals may differ in their response to habitat loss or change. I suggest that population models designed to predict the effect of habitat loss or change on shorebirds should have the ability to investigate the differential response of certain sections of the population, particularly different ages or sexes, that specialise in different diets or feeding methods.  相似文献   

13.
Varying environmental conditions and energetic demands can affect habitat use by predators and their prey. Anthropogenic habitats provide an opportunity to document both predation events and foraging activity by prey and therefore enable an empirical evaluation of how prey cope with trade‐offs between starvation and predation risk in environments of variable foraging opportunities and predation danger. Here, we use seven years of observational data of peregrine falcons Falco peregrinus and shorebirds at a semi‐intensive shrimp farm to determine how starvation and predation risk vary for shorebirds under a predictable variation in foraging opportunities. Attack rate (mean 0.1 attacks/hr, equating 1 attack every ten hours) was positively associated with the total foraging area available for shorebirds at the shrimp farm throughout the harvesting period, with tidal amplitude at the adjacent mudflat having a strong nonlinear (quadratic) effect. Hunt success (mean 14%) was higher during low tides and declined as the target flocks became larger. Finally, individual shorebird vigilance behaviors were more frequent when birds foraged in smaller flocks at ponds with poorer conditions. Our results provide empirical evidence of a risk threshold modulated by tidal conditions at the adjacent wetlands, where shorebirds trade‐off risk and rewards to decide to avoid or forage at the shrimp farm (a potentially dangerous habitat) depending on their need to meet daily energy requirements. We propose that semi‐intensive shrimp farms serve as ideal “arenas” for studying predator–prey dynamics of shorebirds and falcons, because harvest operations and regular tidal cycles create a mosaic of foraging patches with predictable food supply. In addition, the relatively low hunt success suggests that indirect effects associated with enhanced starvation risk are important in shorebird life‐history decisions.  相似文献   

14.
Foraging strategies of birds can influence trophic plant–insect networks with impacts on primary plant production. Recent experiments show that some forest insectivorous birds can use herbivore‐induced plant volatiles (HIPVs) to locate herbivore‐infested trees, but it is unclear how birds combine or prioritize visual and olfactory information when making foraging decisions. Here, we investigated attraction of ground‐foraging birds to HIPVs and visible prey in short vegetation on farmland in a series of foraging choice experiments. Birds showed an initial preference for HIPVs when visual information was the same for all choice options (i.e., one experimental setup had all options with visible prey, another setup with hidden prey). However, if the alternatives within an experimental setup included visible prey (without HIPV) in competition with HIPV‐only, then birds preferred the visual option over HIPVs. Our results show that olfactory cues can play an important role in birds’ foraging choices when visual information contains little variation; however, visual cues are preferred when variation is present. This suggests certain aspects of bird foraging decisions in agricultural habitats are mediated by olfactory interaction mechanisms between birds and plants. We also found that birds from variety of dietary food guilds were attracted to HIPVs; hence, the ability of birds to use plant cues is probably more general than previously thought, and may influence the biological pest control potential of birds on farmland.  相似文献   

15.
Graham R. Martin  Sarah Wanless 《Ibis》2015,157(4):798-807
Significant differences in avian visual fields are found between closely related species that differ in their foraging technique. We report marked differences in the visual fields of two auk species. In air, Common Guillemots Uria aalge have relatively narrow binocular fields typical of those found in non‐passerine predatory birds. Atlantic Puffins Fratercula arctica have much broader binocular fields similar to those that have hitherto been recorded in passerines and in a penguin. In water, visual fields narrow considerably and binocularity in the direction of the bill is probably abolished in both auk species. Although perceptual challenges associated with foraging are similar in both species during the breeding season, when they are piscivorous, Puffins (but not Guillemots) face more exacting perceptual challenges when foraging at other times, when they take a high proportion of small invertebrate prey. Capturing this prey probably requires more accurate, visually guided bill placement and we argue that this is met by the Puffin's broader binocular field, which is retained upon immersion; its upward orientation may enable prey to be seen in silhouette. These visual field configurations have potentially important consequences that render these birds vulnerable to collision with human artefacts underwater, but not in air. They also have consequences for vigilance behaviour.  相似文献   

16.
Predatory diving birds, such as cormorants (Phalacrocoracidae), have been generally regarded as visually guided pursuit foragers. However, due to their poor visual resolution underwater, it has recently been hypothesized that Great Cormorants do not in fact employ a pursuit-dive foraging technique. They appear capable of detecting typical prey only at short distances, and primarily use a foraging technique in which prey may be detected only at close quarters or flushed from a substratum or hiding place. In birds, visual field parameters, such as the position and extent of the region of binocular vision, and how these are altered by eye movements, appear to be determined primarily by feeding ecology. Therefore, to understand further the feeding technique of Great Cormorants we have determined retinal visual fields and eye movement amplitudes using an ophthalmoscopic reflex technique. We show that visual fields and eye movements in cormorants exhibit close similarity with those of other birds, such as herons (Ardeidae) and hornbills (Bucerotidae), which forage terrestrially typically using a close-quarter prey detection or flushing technique and/or which need to examine items held in the bill before ingestion. We argue that this visual field topography and associated eye movements is a general characteristic of birds whose foraging requires the detection of nearby mobile prey items from within a wide arc around the head, accurate capture of that prey using the bill, and visual examination of the caught prey held in the bill. This supports the idea that cormorants, although visually guided predators, are not primarily pursuit predators, and that their visual fields exhibit convergence towards a set of characteristics that meet the perceptual challenges of close-quarter prey detection or flush foraging in both aquatic and terrestrial environments.  相似文献   

17.
Visual fields were determined in two species of shorebirds (Charadriiformes) whose foraging is guided primarily by different sources of information: red knots (Calidris canutus, tactile foragers) and European golden plovers (Pluvialis apricaria, visual foragers). The visual fields of both species showed features that are found in a wide range of birds whose foraging involves precision pecking or lunging at food items. Surprisingly, red knots did not show comprehensive panoramic vision as found in some other tactile feeders; they have a binocular field surrounding the bill and a substantial blind area behind the head. We argue that this is because knots switch to more visually guided foraging on their breeding grounds. However, this visual field topography leaves them vulnerable to predation, especially when using tactile foraging in non-breeding locations where predation by falcons is an important selection factor. Golden plovers use visually guided foraging throughout the year, and so it is not surprising that they have precision-pecking frontal visual fields. However, they often feed at night and this is associated with relatively large eyes. These are anchored in the skull by a wing of bone extending from the dorsal perimeter of each orbit; a skeletal structure previously unreported in birds and which we have named 'supraorbital aliform bone', Os supraorbitale aliforme. The larger eyes and their associated supraorbital wings result in a wide blind area above the head, which may leave these plovers particularly vulnerable to predation. Thus, in these two shorebirds, we see clear examples of the trade-off between the two key functions of visual fields: (i) the detection of predators remote from the animal and (ii) the control of accurate behaviours, such as the procurement of food items, at close quarters.  相似文献   

18.
Rock Sandpipers Calidris ptilocnemis have the most northerly non‐breeding distribution of any shorebird in the Pacific Basin (upper Cook Inlet, Alaska; 61°N, 151°W). In terms of freezing temperatures, persistent winds and pervasive ice, this site is the harshest used by shorebirds during winter. We integrated physiological, metabolic, behavioural and environmental aspects of the non‐breeding ecology of Rock Sandpipers at the northern extent of their range to determine the relative importance of these factors in facilitating their unique non‐breeding ecology. Not surprisingly, estimated daily energetic demands were greatest during January, the coldest period of winter. These estimates were greatest for foraging birds, and exceeded basal metabolic rates by a factor of 6.5, a scope of increase that approaches the maximum sustained rate of energetic output by shorebirds during periods of migration, but far exceeds these periods in duration. We assessed the quality of their primary prey, the bivalve Macoma balthica, to determine the daily foraging duration required by Rock Sandpipers to satisfy such energetic demands. Based on size‐specific estimates of M. balthica quality, Rock Sandpipers require over 13 h/day of foraging time in upper Cook Inlet in January, even when feeding on the highest quality prey. This range approaches the average daily duration of mudflat availability in this region (c. 18 h), a maximum value that annually decreases due to the accumulation of shore‐fast ice. Rock Sandpipers are likely to maximize access to foraging sites by following the exposure of ice‐free mudflats across the upper Cook Inlet region and by selecting smaller, higher quality M. balthica to minimize foraging times. Ultimately, this unusual non‐breeding ecology relies on the high quality of their prey resources. Compared with other sites across their range, M. balthica from upper Cook Inlet have relatively light shells, potentially the result of the region's depauperate invertebrate predator community. Given the delicate balance between environmental and prey conditions that currently make Cook Inlet a viable wintering area for Rock Sandpipers, small variations in these variables may affect the suitability of the site in the future.  相似文献   

19.
Consistent intra‐population variability in foraging behaviour is found among a wide range of taxa. Such foraging specialisations are common among marine vertebrates, yet it is not clear how individuals repeatedly locate prey or foraging sites at ocean‐wide scales. Using GPS and time‐depth loggers we studied the fine‐scale foraging behaviour of central‐place northern gannets Morus bassanus at two large colonies. First, we estimated the degree of consistency in individual foraging routes and sites across repeated trips. Second, we tested for individual differences in searching behaviour in response to environmental covariates using reaction norms, estimated from mixed effect models. Adult gannets tracked over multiple foraging trips showed repeatable between‐individual differences in terminal points and departure angles of foraging trips, but low repeatability in trip duration and trip length. Importantly, individual birds showed highly repeatable dive locations, with consistently different environmental conditions (such as copepod abundance), suggesting a high degree of foraging site specialisation. Gannets also showed between‐individual differences in searching behaviour along environmental gradients, such that individuals intensified searching under different conditions. Together these results suggest that widespread individual foraging consistency may represent specialisation and be linked with individual responses to environmental conditions. Such divergent searching behaviour could provide a mechanism by which consistent foraging behaviour arises and is maintained among animals that forage across large spatial scales.  相似文献   

20.
Studies of cooperatively breeding birds rarely benefit from the extensive research on adaptive foraging behaviour, despite the potential for concepts such as state‐dependent foraging to explain many aspects of behaviour in social groups. For example, sex differences in preferred foraging techniques used by green woodhoopoes, Phoeniculus purpureus, have previously been explained by sexual dimorphism in bill length and the benefits afforded by foraging specialization and niche differentiation within cooperative groups. Contrary to this argument, there were no sex differences in mean foraging success and/or prey size captured when males and females used the same foraging techniques. Subordinates of both sexes did experience lower and more varied foraging success compared with dominants, but probably only as a consequence of competition or inexperience. However, dominant males experienced greater variance in individual foraging success compared with dominant females, and dominant males also experienced greater variances in prey size when using their preferred foraging techniques. Dominant males therefore appeared to specialize in foraging techniques that provided more variable rewards, whilst dominant females consistently chose to minimize variation in reward. Dominant females also experienced less variance in foraging returns when using the same techniques as males, suggesting a possible link with sexual dimorphism in bill length. Partitioning of foraging niches in dominant green woodhoopoes therefore appears to be better explained by sex differences in variance (risk) sensitivity to foraging rewards. We suggest that this kind of detailed analysis of state‐dependent foraging has the potential to explain many of the crucial age and sex differences in behaviour within cooperative groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号