首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Identical time-resolved fluorescence measurements with ~ 3.5-ps resolution were performed for three types of PSI preparations from the green alga, Chlamydomonas reinhardtii: isolated PSI cores, isolated PSI–LHCI complexes and PSI–LHCI complexes in whole living cells. Fluorescence decay in these types of PSI preparations has been previously investigated but never under the same experimental conditions. As a result we present consistent picture of excitation dynamics in algal PSI. Temporal evolution of fluorescence spectra can be generally described by three decay components with similar lifetimes in all samples (6–8 ps, 25–30 ps, 166–314 ps). In the PSI cores, the fluorescence decay is dominated by the two fastest components (~ 90%), which can be assigned to excitation energy trapping in the reaction center by reversible primary charge separation. Excitation dynamics in the PSI–LHCI preparations is more complex because of the energy transfer between the LHCI antenna system and the core. The average trapping time of excitations created in the well coupled LHCI antenna system is about 12–15 ps longer than excitations formed in the PSI core antenna. Excitation dynamics in PSI–LHCI complexes in whole living cells is very similar to that observed in isolated complexes. Our data support the view that chlorophylls responsible for the long-wavelength emission are located mostly in LHCI. We also compared in detail our results with the literature data obtained for plant PSI.  相似文献   

2.
William Remelli  Stefano Santabarbara 《BBA》2018,1859(11):1207-1222
The fluorescence emission spectrum of Synechocystis sp. PPC6803 cells, at room temperature, displays: i) significant bandshape variations when collected under open (F0) and closed (FM) Photosystem II reaction centre conditions; ii) a marked dependence on the excitation wavelength both under F0 and FM conditions, due to the enhancement of phycobilisomes (PBS) emission upon their direct excitation. As a consequence: iii) the ratio of the variable and maximal fluorescence (FV/FM), that is a commonly employed indicator of the maximal photochemical quantum efficiency of PSII (Φpc, PSII), displays a significant dependency on both the excitation and the emission (detection) wavelength; iv) the FV/FM excitation/emission wavelength dependency is due, primarily, to the overlap of PSII emission with that of supercomplexes showing negligible changes in quantum yield upon trap closure, i.e. PSI and a PBS fraction which is incapable to transfer the excitation energy efficiently to core complexes. v) The contribution to the cellular emission and the relative absorption-cross section of PSII, PSI and uncoupled PBS are extracted using a spectral decomposition strategy. It is concluded that vi) Φpc, PSII is generally underestimated from the FV/FM measurements in this organism and, the degree of the estimation bias, which can exceed 50%, depends on the measurement conditions. Spectral modelling based on the decomposed emission/cross-section profiles were extended to other processes typically monitored from steady-state fluorescence measurements, in the presence of an actinic illumination, in particular non-photochemical quenching. It is suggested that vii) the quenching extent is generally underestimated in analogy to FV/FM but that viii) the location of quenching sites can be discriminated based on the combined excitation/emission spectral analysis.  相似文献   

3.
4.
    
The fluorescence emission characteristics of the photosynthetic apparatus under conditions of open (F0) and closed (FM) Photosystem II reaction centres have been investigated under steady state conditions and by monitoring the decay lifetimes of the excited state, in vivo, in the green alga Chlorella sorokiniana. The results indicate a marked wavelength dependence of the ratio of the variable fluorescence, FV = FM − F0, over FM, a parameter that is often employed to estimate the maximal quantum efficiency of Photosystem II. The maximal value of the FV/FM ratio is observed between 660 and 680 nm and the minimal in the 690–730 nm region. It is possible to attribute the spectral variation of FV/FM principally to the contribution of Photosystem I fluorescence emission at room temperature. Moreover, the analysis of the excited state lifetime at F0 and FM indicates only a small wavelength dependence of Photosystem II trapping efficiency in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号