共查询到20条相似文献,搜索用时 15 毫秒
1.
Li Ping Cheng Tian Chi Wang Rao Yu Meng Li Jin Wen Huang 《Bioorganic & medicinal chemistry letters》2018,28(23-24):3622-3629
Neuraminidase (NA) is an important antiviral drug target. Zanamivir is one of the most potent NA inhibitors. In this paper, a series of zanamivir derivatives as potential NA inhibitors were studied by combination of molecular modeling techniques including 3D-QSAR, molecular docking, and molecular dynamics (MD) simulation. The results show that the best CoMFA (comparative molecular field analysis) model has q2?=?0.728 and r2?=?0.988, and the best CoMSIA (comparative molecular similarity indices analysis) model has q2?=?0.750 and r2?=?0.981, respectively. The built 3D-QSAR models show significant statistical quality and excellent predictive ability. Seven new NA inhibitors were designed and predicted. 20?ns of MD simulations were carried out and their binding free energies were calculated. Two designed compounds were selected to be synthesized and biologically evaluated by NA inhibition and virus inhibition assays. One compound (IC50?=?0.670?µM, SI?>?149) exhibits excellent antiviral activity against A/WSN/33 H1N1, which is superior to the reference drug zanamivir (IC50?=?0.873?µM, SI?>?115). The theoretical and experimental results may provide reference for development of new anti-influenza drugs. 相似文献
2.
Boyu Wang Kuanglei Wang Peipei Meng Yaping Hu Fei Yang Kemin Liu Zaiqiang Lei Binfeng Chen Yongshou Tian 《Bioorganic & medicinal chemistry letters》2018,28(21):3477-3482
In this study, a series of carboxyl-modified oseltamivir analogs with improved lipophilicity were designed and synthesized, and their inhibitory activities against neuraminidase from influenza A virus H5N1 subtype were evaluated. The results demonstrated that compound 5m exhibited potent inhibitory activity (IC50?=?1.30?±?0.23?μM), and it targeted the recently discovered 430-cavity. Compound 5m (Log D?=??0.12) is more lipophilic than oseltamivir carboxylate (Log D?=??1.69) at pH 7.4, which is potentially propitious to improved membrane permeability and oral drug absorption. Meanwhile, 5m showed high stability in human liver microsomes. The findings of this study can be valuable in identifying neuraminidase inhibitors with optimal lipophilicity and in the exploration of 430-cavity. 相似文献
3.
Zhen Wang Li Ping Cheng Xing Hua Zhang Wan Pang Liang Li Jin Long Zhao 《Bioorganic & medicinal chemistry letters》2017,27(24):5429-5435
Neuraminidase (NA) is one of the particular potential targets for novel antiviral therapy. In this work, a series of neuraminidase inhibitors with the cyclohexene scaffold were studied based upon the combination of 3D-QSAR, molecular docking, and molecular dynamics techniques. The results indicate that the built 3D-QSAR models yield reliable statistical information: the correlation coefficient (r2) and cross-validation coefficient (q2) of CoMFA (comparative molecular field analysis) are 0.992 and 0.819; the r2 and q2 of CoMSIA (comparative molecular similarity analysis) are 0.992 and 0.863, respectively. Molecular docking and MD simulations were conducted to confirm the detailed binding mode of enzyme-inhibitor system. The new NA inhibitors had been designed, synthesized, and their inhibitory activities against group-1 neuraminidase were determined. One agent displayed excellent neuraminidase inhibition, with IC50 value of 39.6?μM against NA, while IC50 value for oseltamivir is 61.1?μM. This compound may be further investigated for the treatment of infection by the new type influenza virus. 相似文献
4.
Cheng Lu Yan Yin Fanli Meng Yongbin Dun Keke Pei Chenlu Wang Xu Xu Fanhong Wu 《Bioorganic & medicinal chemistry letters》2018,28(11):2003-2007
Neuraminidase has been considered as an important target for designing agents against influenza viruses. In a discovery of anti-influenza agents with epigoitrin as the initial lead compound, a series of 1-amino-2-alkanols were synthesized and biologically evaluated. The in vitro evaluation indicated that (E)-1-amino-4-phenylbut-3-en-2-ol (C1) had better inhibitory activities than 2-amino-1-arylethan-1-ol derivatives. To our surprise, sulfonation of C1 with 4-methoxybenzenesulfonyl chloride afforded more active inhibitor II with up to 6.4?μM IC50 value against neuraminidase. Furthermore, docking of inhibitor II into the active site of NA found that the H atoms in both NH2 and OH groups of inhibitor II were the key factors for potency. Molecular docking research did not explained very well the observed structure-activity relationship (SAR) from amino acid residue level, but also aided the discovery of (E)-1-amino-4-phenylbut-3-en-2-ol derivatives as novel and potent NA inhibitors. 相似文献
5.
Yuanchao Xie Bing Huang Kexiang Yu Wenfang Xu 《Bioorganic & medicinal chemistry》2013,21(24):7715-7723
Eight series of compounds, each series containing two to five compounds were prepared by structural modifications of a lead, which was previously discovered as a mild influenza neuraminidase (NA) inhibitor. On the basis of the biological result, a detailed structure–activity relationship (SAR) was derived and discussed. Several caffeic acid derivatives that acted as non-competitive inhibitors were close or superior to the lead and also presented good antiviral activities in cells. Besides, it was interesting to find that modifications of the lead with different strategies could result in selective inhibition against N1 or N2. The preliminary docking analysis indicated that the 150-cavity of the enzymes played an important role in the selective inhibition. 相似文献
6.
Dao TT Nguyen PH Lee HS Kim E Park J Lim SI Oh WK 《Bioorganic & medicinal chemistry letters》2011,21(1):294-298
The emergence of highly pathogenic influenza A virus strains, such as the new H1N1 swine influenza (novel influenza), represents a serious threat to global human health. During our course of an anti-influenza screening program on natural products, one new licochalcone G (1) and seven known (2-8) chalcones were isolated as active principles from the acetone extract of Glycyrrhiza inflata. Compounds 3 and 6 without prenyl group showed strong inhibitory effects on various neuraminidases from influenza viral strains, H1N1, H9N2, novel H1N1 (WT), and oseltamivir-resistant novel H1N1 (H274Y) expressed in 293T cells. In addition, the efficacy of oseltamivir with the presence of compound 3 (5 μM) was increased against H274Y neuraminidase. This evidence of synergistic effect makes this inhibitor to have a potential possibility for control of pandemic infection by oseltamivir-resistant influenza virus. 相似文献
7.
Ulrich Kessler Daniele Castagnolo Mafalda Pagano Davide Deodato Martina Bernardini Beatrice Pilger Charlene Ranadheera Maurizio Botta 《Bioorganic & medicinal chemistry letters》2013,23(20):5575-5577
The identification of a novel hit compound inhibitor of the protein–protein interaction between the influenza RNA-polymerase PA and PB1 subunits has been accomplished by means of high-throughput screening. A small family of structurally related molecules has been synthesized and biologically evaluated with most of the compounds showing micromolar potency of inhibition against viral replication. 相似文献
8.
Neuraminidase (NA) is one of the key surface proteins of the influenza virus, which is an important target for anti-influenza therapy. In the present study, bioassay-guided fractionation led to isolation of two new compounds, rhamnetin-3-O-β-d-glucuronide-6″-methyl ester (1) and rhamnazin-3-O-β-d-glucuronide-6″-methyl ester (2), along with seventeen known compounds (3-19), from the MeOH extract of Flos Caryophylli using in vitro NA inhibition assay. These isolated compounds exhibited significantly inhibitory effects on the NA with IC50 values ranging from 8.4 to 94.1 μM and were found to protect MDCK cells from A (H1N1) influenza infections (EC50 = 1.5–84.7 μM) with very low cytotoxicity to the host cells (CC50 = 374.3–1266.9 μM)), with selective index (SI) ranging from 7 to 297. The primary structure-relationships of these isolates were also discussed. 相似文献
9.
Hye Jin Chung Majid Rasool Kamli Hyo Jeong Lee Jae Du Ha Sung Yun Cho Jongkook Lee Jae Yang Kong Sun-Young Han 《Biochemical and biophysical research communications》2014
Recently some fms-like tyrosine kinase 3 (FLT3) inhibitors have shown good efficacy in acute myeloid leukemia (AML) patients. In an effort to develop anti-leukemic drugs, we investigated quinolinone derivatives as novel FLT3 inhibitors. Two substituted quinolinones, KR65367 and KR65370 were subjected to FLT3 kinase activity assay and showed potent inhibition against FLT3 kinase activity in vitro, with IC50 of 2.7 and 0.57 nM, respectively. As a measure of selectivity, effects on the activity of other kinases were also tested. Both compounds have negligible activity against Met, Ron, epidermal growth factor receptor, Aurora A, Janus kinase 2, and insulin receptor; with IC50 greater than 10 μM. KR compounds showed strong growth inhibition in MV4;11 AML cells and increased the apoptotic cell death in flow cytometric analyses. A decrease in STAT5 phosphorylation by KR compounds was observed in MV4;11 cells. Furthermore, in vitro evaluation of compounds structurally related to KR65367 and KR65370 showed a good structure-activity relationship. 相似文献
10.
A series of substituted acyl(thio)urea and 2H-1,2,4-thiadiazolo [2,3-a] pyrimidine derivatives were prepared and both of their cell culture and enzymatic activity toward influenza virus were tested. Their in vitro neuraminidase inhibitory activities were in good agreement with the corresponding activities in cultured cells and they were evaluated as potent neuraminidase inhibitors. Of the analogues that demonstrated IC50s < 0.1 μM, 16 and 60 were further investigated as candidates with the most potential for future development. The molecular docking work of the representative compound was described to provide more insight into their mechanism of action and further rationalize the observations of this new series herein, which represents a novel class of highly potent and selective inhibitors of influenza virus. 相似文献
11.
Wei-Bing Zhang Wen-Bo Liu Jing-Wei Wu Wei-Li Dong Run-Ling Wang 《Molecular simulation》2014,40(15):1209-1217
Owing to its unique function to release the progeny virus particles from the surface of an infected cell, neuraminidase has drawn special attention for developing new drugs to treat influenza viruses. The 150-cavity that is adjacent to the active pocket of the group-1 neuraminidase (N1) renders the conformational change from ‘open’ form to ‘closed’ form when enzyme is binding with a ligand. Consequently, it would be a better strategy to design multi-binding-site inhibitors including X and R groups with proper shapes, sizes and electronic charges fitting into the active site. The NCI and ZINC fragment databases were screened for finding the optimal fragments with de novo design technique. By doing so, 24 derivatives of oseltamivir were obtained by linking the fragments at two different sites of the scaffold of oseltamivir. Molecular docking and dynamics showed that these compounds not only adopt more favourable conformation but also have stronger binding interaction with receptor. Most importantly, all compounds skilfully pass through the cleft (formed by Glu119 and Arg156) and fit into 150-cavity. Therefore, the selected 24 derivatives may become promising candidates for treating influenza virus; in addition, the findings reported here may at least provide useful insights and stimulate new strategy in this area. 相似文献
12.
Although several flavonoids have been reported to exert inhibitory effects on influenza H1N1 neuraminidase (NA), little is known about the structure-activity relationship and binding mode. Three dimensional QSAR (quantitative structure-activity relationship) and molecular docking approaches were applied to explore the structural requisites of flavone derivatives for NA inhibitory activity. A meaningful QSAR model with R(2) of 0.5968, Q(2) of 0.6457, and Pearson-R value of 0.8679, was constructed. From the QSAR model, it could be seen how 6-OH, 3'-OH, 4'-OH, and 8-position substituent affect the NA inhibitory activity. Molecular docking study between the most active compound and NA suggested that hydrogen bonds, hydrophobic and electrostatic interactions were closely related to NA inhibitory activity, 5-OH and 7-OH may be essential for this activity. The results provide a set of useful guidelines for the rational design of novel NA inhibitors. 相似文献
13.
The worldwide spread of H5N1 avian influenza and the increasing reports about its resistance to the existing drugs have made a priority for the development of the new anti-influenza molecules. The crystal structure of H5N1 avian influenza neuraminidase reported recently by Russell et al. [R.J. Russell, L.F. Haire, D.J. Stevens, P.J. Collins, Y. P. Lin, G.M. Blackburn, A.J. Hay, S.J. Gamblin, J.J. Skehel, The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design, Nature 443 (2006) 45-49] have provided new opportunities for drug design in this regard. It is revealed through the structure that the active sites of the group-1 neuraminidases, which contain the N1 subtype, have a very different three-dimensional structure from those of group-2 neuraminidases. The key difference is in the 150-loop cavity adjacent to the conserved active site in neuraminidase. Based on these findings and by modifying oseltamivir, six analog inhibitors were proposed as candidates for developing inhibitors against H5N1 virus, particularly against the oseltamivir-resistant H5N1 virus strain. 相似文献
14.
Songwen Lin Chunyang Wang Ming Ji Deyu Wu Yuanhao Lv Li Sheng Fangbin Han Yi Dong Kehui Zhang Yakun Yang Yan Li Xiaoguang Chen Heng Xu 《Bioorganic & medicinal chemistry》2018,26(3):637-646
A series of new thienopyrimidine derivatives has been discovered as potent PI3K inhibitors. The systematic SAR studies for these analogues are described. Among them, 8a and 9a exhibit nanomolar enzymatic potencies and sub-micromolar cellular anti-proliferative activities. 8a displays favorable pharmacokinetic profiles, while 9a easily undergoes deacetylation to yield a major metabolite 8a. Furthermore, 8a and 9a potently inhibit tumor growth in a dose-dependent manner in the NCI-H460 xenograft model with an acceptable safety profile. 相似文献
15.
Shu-Qing Wang Qi-Shi Du Ri-Bo Huang Da-Wei Zhang Kuo-Chen Chou 《Biochemical and biophysical research communications》2009,386(3):432-436
The neuraminidase (NA) of influenza virus is the target of anti-flu drugs oseltamivir and zanamivir. Clinical practices showed that oseltamivir was effective to treat the 2009-H1N1 influenza but failed to the 2006-H5N1 avian influenza. To perform an in-depth analysis on such a drug-resistance problem, the 2009-H1N1-NA structure was developed. To compare it with the crystal 2006-H5N1-NA structure as well as the 1918 influenza virus H1N1-NA structure, the multiple sequential and structural alignments were performed. It has been revealed that the hydrophobic residue Try347 in H5N1-NA does not match with the hydrophilic carboxyl group of oseltamivir as in the case of H1N1-NA. This may be the reason why H5N1 avian influenza virus is drug-resistant to oseltamivir. The finding provides useful insights for how to modify the existing drugs, such as oseltamivir and zanamivir, making them not only become more effective against H1N1 virus but also effective against H5N1 virus. 相似文献
16.
《Bioorganic & medicinal chemistry》2016,24(5):957-966
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is related to cellular activities. Abnormalities of this signaling pathway were discovered in various cancers, including hepatocellular carcinoma (HCC). The PI3K/mTOR dual inhibitors were proposed to have enhanced antitumor efficacies by targeting multiple points of the signaling pathway. We synthesized a series of propynyl-substituted benzenesulfonamide derivatives as PI3K/mTOR dual inhibitors. Compound 7k (NSC781406) was identified as a highly potent dual inhibitor, which exhibited potent tumor growth inhibition in the hepatocellular carcinoma BEL-7404 xenograft model. Compound 7k may be a potential therapeutic drug candidate for HCC. 相似文献
17.
This report described the efficacy of NA inhibitors against newly evolved strains of H1N1 viruses. This in silico study was designed to understand the mode of interactions of NA inhibitors with NA. Hence, ligand, oseltamivir, zanamivir and peramivir were docked with modeled NA, (USA/2007), ACD65204 (Japan/1992), BAA06717 (S. Korea/2005) and ACE77988 (USA/2007). This study is based on interaction energies. Ramachandran Z-scores for these modeled structures were found to be −0.998, −1.121, −0.870 and −1.023, respectively, which confirms the accuracy of the modeled structures. These interactions revealed that some of these interacting residues have remained conserved throughout all the pandemics. These amino acid residues were found to be R118, R152, R225, E277, E278, R293 and Y402. Moreover, our study concludes that peramivir is the most efficient inhibitor against NA of H1N1. ACD65204相似文献
18.
Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator of insulin signaling, is considered as a promising and validated therapeutic target for type 2 diabetes mellitus (T2DM) and obesity. Upon careful study, a series of 2-ethoxy-4-(methoxymethyl)benzamide and 2-ethoxy-5-(methoxymethyl)benzamide analogs designed by the “bioisosteric principle” were discovered, wherein their PTP1B inhibitory potency, type of PTP1B inhibition, selectivity and membrane permeability were evaluated. Among them, compound 10m exhibited high inhibitory activity (IC50 = 0.07 μM), significant selectivity (32-fold) over T-cell PTPase (TCPTP) as well as good membrane permeability (Papp = 2.41 × 10−6 cm/s). Further studies on cell viability and cellular activity revealed that compound 10m could enhance insulin-stimulated glucose uptake with no significant cytotoxicity. 相似文献
19.
Discovery of quinazolinone and quinoxaline derivatives as potent and selective poly(ADP-ribose) polymerase-1/2 inhibitors 总被引:2,自引:0,他引:2
Iwashita A Hattori K Yamamoto H Ishida J Kido Y Kamijo K Murano K Miyake H Kinoshita T Warizaya M Ohkubo M Matsuoka N Mutoh S 《FEBS letters》2005,579(6):1389-1393
Two classes of quinazolinone derivatives and quinoxaline derivatives were identified as potent and selective poly(ADP-ribose) polymerase-1 and 2 (PARP-1) and (PARP-2) inhibitors, respectively. In PARP enzyme assays using recombinant PARP-1 and PARP-2, quinazolinone derivatives displayed relatively high selectivity for PARP-1 and quinoxaline derivatives showed superior selectivity for PARP-2. SBDD analysis via a combination of X-ray structural study and homology modeling suggested distinct interactions of inhibitors with PARP-1 and PARP-2. These findings provide a new structural framework for the design of selective inhibitors for PARP-1 and PARP-2. 相似文献
20.
Bassem H. Naguib Tamer M. Abdelghany 《Journal of enzyme inhibition and medicinal chemistry》2017,32(1):457-467
Four series of pyridothienopyrimidin-4-one derivatives were designed and prepared to improve the pim-1 inhibitory activity of the previously reported thieno[2,3-b]pyridines. Significant improvement in the pim-1 inhibition and cytotoxic activity was achieved using structure rigidification strategy via ring closure. Six compounds (6c, 7a, 7c, 7d, 8b and 9) showed highly potent pim-1 inhibitory activity with IC50 of 4.62, 1.18, 1.38, 1.97, 8.83 and 4.18?μM, respectively. Four other compounds (6b, 6d, 7b and 8a) showed moderate pim-1 inhibition. The most active compounds were tested for their cytotoxic activity on three cell lines [MCF7, HCT116 and PC3]. Compounds 7a [the 2-(2-chlorophenyl)-2,3-dihydro derivative] and 7d [the 2-(2-(trifluoromethyl)-phenyl)-2,3-dihydro derivative] displayed the most potent cytotoxic effect on the three cell lines tested consistent with their highest estimated pim-1 IC50 values. 相似文献