首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two outstanding questions in evolutionary biology are whether, and how often, the genetic basis of phenotypic evolution is predictable; and whether genetic change constrains evolutionary reversibility. We address these questions by studying the genetic basis of red flower color in Penstemon barbatus. The production of red flowers often involves the inactivation of one or both of two anthocyanin pathway genes, Flavonoid 3′,5′‐hydroxylase (F3′5′h) and Flavonoid 3′‐hydroxylase (F3′h). We used gene expression and enzyme function assays to determine that redundant inactivating mutations to F3′5′h underlie the evolution of red flowers in P. barbatus. Comparison of our results to previously characterized shifts from blue to red flowers suggests that the genetic change associated with the evolution of red flowers is predictable: when it involves elimination of F3′5′H activity, functional inactivation or deletion of this gene tends to occur; however, when it involves elimination of F3′H activity, tissue‐specific regulatory substitutions occur and the gene is not functionally inactivated. This pattern is consistent with emerging data from physiological experiments indicating that F3′h may have pleiotropic effects and is thus subject to purifying selection. The multiple, redundant inactivating mutations to F3′5′h suggest that reversal to blue‐purple flowers in this group would be unlikely.  相似文献   

2.
We analyzed the evolution of red/orange flowers in four putatively bird-pollinated species of Macaronesian Lotus, with the aim of investigating whether this floral trait evolved from a similar trait found in some entomophilous Lotus species, namely the ability to modify flower color to red after anthesis. First, we mapped the ability to modify flower color in this group on a well-resolved and densely sampled phylogenetic tree of the Macaronesian Lotus. Secondly, we determined differences in light reflectance and pigment composition between petals of (1) prechange and postchange flowers in bee-pollinated species and (2) between bee and putatively bird-pollinated species. Post-anthesis flower color change evolved three times within Macaronesian Lotus, and putatively bird-pollinated species evolved within a clade with this ability to change flower color to red after anthesis. The evolutionary transition to red/orange flowers in the putatively bird-pollinated species involved biochemical changes similar to those of the developmental transition to red postchange flowers. In both cases there are changes in the composition of flavonols and anthocyanidins within the same metabolic pathways, especially in the cyanidin branch of pigment production, but not the activation or inactivation of additional branches of this pathway. Post-anthesis color change in Lotus, from yellow to red, is thought to be an adaptation to reduce bee visits to already pollinated flowers. Our results are consistent with the hypothesis that constitutive red coloration for bird-pollination evolved from facultative red flower color change in Lotus. As red post-anthesis coloration is widespread in plants, this may possibly represent a widespread exaptive mechanism for the evolution of bird pollination.  相似文献   

3.
Abstract Floral color changes are common in Weigela and the retention of post‐change flowers has been interpreted as a mechanism to increase attractiveness from a long distance and shorten pollinators’ lingering time on the inflorescence(s) of individual plants. In the present study, we investigated the temporal pattern of floral color change and time required for pollen tube growth in the shrub Weigela japonica var. sinica. Over the 4‐day anthesis, the color of the corolla in this species changes from white to red and the color cue changes from yellow to purple. The duration of both the white phase and the intermediate phase is approximately 1 day and the duration of the red phase is approximately 2 days. Our studies showed that color change in Weigela japonica var. sinica is age‐dependent but independent of pollinator visits and flower pollination. Post‐change flowers lost most of both the male and female residual reproductive ability and retained no rewards for pollinators. It took at least 3 days for a pollen tube to grow to the ovules and achieve fertilization. Thus, retention of post‐change flowers is necessary for the completion of pollen tube growth. Our results indicate that the temporal pattern of color change and time requirement for pollen tube growth are most likely related events.  相似文献   

4.
Flower color is often viewed as a trait that signals rewards to pollinators, such that the relationship between flower color and plant fitness might result from its association with another trait. We used experimental manipulations of flower color and nectar reward to dissociate the natural character correlations present in a hybrid zone between Ipomopsis aggregata and Ipomopsis tenuituba. Isozyme markers were used to follow the male and female reproductive success of these engineered phenotypes. One field experiment compared fitnesses of I. aggregata plants that varied only in flower color. Plants with flowers painted red received more hummingbird visits and sired more seeds than did plants with flowers painted pink or white to match those of hybrids and I. tenuituba. Our second field experiment compared fitnesses of I. aggregata, I. tenuituba, and hybrid plants in an unmanipulated array and in a second array where all flowers were painted red. In the unmanipulated array, I. aggregata received more hummingbird visits, set more seeds per flower, and sired more seeds per flower. These fitness differences largely disappeared when the color differences were eliminated. The higher male fitness of I. aggregata was due to its very high success at siring seeds on conspecific recipients. On both I. tenuituba and hybrid recipients, hybrid plants sired the most seeds, despite showing lower pollen fertility than I. aggregata in mixed donor pollinations in the greenhouse. Ipomopsis tenuituba had a fitness of only 13% relative to I. aggregata when traits varied naturally, compared to a fitness of 36% for white relative to red flowers when other traits were held constant.  相似文献   

5.
6.
We compared flower visitation patterns of two coexisting honey bees, Apis mellifera Linnaeus and Apis cerana japonica Radoszkowski, on 20 plant species, including three exotics, under natural conditions in Nara, Japan, from April to August 2012. We also measured flower color based on bee color vision (15 flower species), nectar volume (nine species) and nectar concentration (eight species). Flowers colored white, pink, red, purple and cream were classified as bee‐blue‐green, and yellow was classified as bee‐green. Apis cerana visited 14 plant species and A. mellifera visited 11. Although the two Apis species are similar in morphology, they visited different plants: in particular, A. cerana visited native plant species more often than did A. mellifera. Both A. mellifera and A. cerana visited not only nectariferous flowers but also those with no nectar. We also found different visitation patterns between A. cerana and A. mellifera: Apis cerana more often visited flowers with smaller color angle (bee‐blue‐green), lower chroma and higher brightness, and flowers secreting nectars of higher concentration and smaller volume than did A. mellifera.  相似文献   

7.
Morphological changes and phenolic patterns of developing hellebore sepals and the effects of pistil removal on these parameters were studied by comparing six flower stages of Helleborus niger. Color changes were evaluated colorimetrically, chlorophyll content was measured spectrophotometrically, and anthocyanins and flavonols were identified and quantified with HPLC–MS. Pistil removal not only altered the morphological development of hellebore flower resulting in smaller flower and significant color changes but also lead to several biochemical modifications. Five cyanidin glycosides have been identified from the group of anthocyanins in hellebore. Individual and total anthocyanin content increased from bud to subsequent developmental stages. Moreover, significantly higher content levels of individual and total anthocyanins have been measured in non-pollinated flower sepals compared to sepals of pollinated flowers. From the group of flavonols eight quercetin and kaempferol compounds have been quantified in hellebore sepals. Flavonol content significantly decreased during flower development with lowest levels recorded in sepals of non-pollinated and senescent pollinated hellebore flowers. Sepals of pollinated flowers contained highest levels of chlorophyll and significantly lower amounts of chlorophyll were measured in non-pollinated flowers and in sepals of senescent stage.  相似文献   

8.
The status quo of flavonoid biosynthesis as it relates to flower color is reviewed together with a success in modifying flower color by genetic engineering. Flavonoids and their colored class compounds, anthocyanins, are major contributors to flower color. Many plant species synthesize limited kinds of flavonoids, and thus exhibit a limited range of flower color. Since genes regulating flavonoid biosynthesis are available, it is possible to alter flower color by overexpressing heterologous genes and/or down regulating endogenous genes. Transgenic carnations and a transgenic rose that accumulate delphinidin as a result of expressing a flavonoid 3′,5′-hydroxylase gene and have novel blue hued flowers have been commercialized. Transgenic Nierembergia accumulating pelargonidin, with novel pink flowers, has also been developed. Although it is possible to generate white, yellow, and pink-flowered torenia plants from blue cultivars by genetic engineering, field trial observations indicate difficulty in obtaining stable phenotypes.  相似文献   

9.
The pollination of red, pink, and white color morphs of Ipomopsis aggregata was evaluated to assess whether ethological isolation based on pollinator color discrimination may occur. We observed animal visitors, assessed pollen delivery, seed set per fruit, percentage of flowers setting fruit, nectar production, and timing of flower opening for different color morphs in the Front Range of Colorado. Based on traditional zoophilous flower classifications, we expected hummingbirds to pollinate red-flowered I. aggregata subsp. collina and hawkmoths to pollinate white-flowered I. aggregata subsp. Candida. However, ethological isolation does not appear to occur among color morphs of I. aggregata in the Front Range. Hummingbirds visited red-flowered plants in excess overall, and, to a lesser extent, so did hawkmoths. Both hummingbirds and hawkmoths visited all color morphs and probably transferred pollen among them. Pollen delivery data and a day-night bagging experiment also suggest that pollinators do not necessarily behave as predicted by flower classifications. In addition, there is little evidence for major differences between red, white, and pink flowers in any aspects of reproductive biology. Indeed, most variation occurs within a given color morph.  相似文献   

10.
In some angiosperm groups, a parallelism between nectar traits and pollination syndromes has been demonstrated, whereas in others there is not such relationship and it has been explained as due to phylogenetic constraints. However, nectar trait information remains scarce for many plant groups. This paper focuses on three groups of Scrophularia species, with different flower sizes and principal pollinators, to find out whether nectar sugar composition is determined by pollinator type or reflects taxonomic affinities. Since the species we examined have protogynous flowers, and gender bias in nectar sugar composition has been noted in few plant groups, we also investigated whether sexual phase influenced Scrophularia nectar composition. The sugar composition was found to be similar in all species, having high‐sucrose nectar, except for the Macaronesian Scrophularia calliantha, which was the only species with balanced nectar; this last kind of nectar could be associated with the high interaction rates observed between S. calliantha and passerine birds. The nectar sugar composition (high in sucrose) was unrelated to the principal pollinator group, and could instead be considered a conservative taxonomic trait. No gender bias was observed between functionally female and male flowers for nectar volume or concentration. However, sexual phase significantly affected sucrose percentage in the largest‐flowered species, where the female phase flowers had higher sucrose percentages than the male phase flowers.  相似文献   

11.
The color and patterns of animal‐pollinated flowers are known to have effects on pollinator attraction. In this study, the relative importance of flower color and color contrast patterns on pollinator attraction was examined in two pollinator groups, swallowtail butterflies and hawkmoths using two Hemerocallis species; butterfly‐pollinated H. fulva and hawkmoth‐pollinated H. citrina, having reddish and yellowish flowers in human vision, respectively. Flowers of both species have UV bullseye patterns, composed of UV‐absorbing centers and UV‐reflecting peripheries, known to function as a typical nectar guide, but UV reflectance was significantly more intense in the peripheries of H. citrina flowers than in those of H. fulva flowers. Comparison based on the visual systems of butterflies and hawkmoths showed that the color contrast of the bullseye pattern in H. citrina was more intense than that in H. fulva. To evaluate the relative importance of flower color and the color contrast of bullseye pattern on pollinator attraction, we performed a series of observations using experimental arrays consisting of Hemerocallis species and their hybrids. As a result, swallowtail butterflies and crepuscular/nocturnal hawkmoths showed contrasting preferences for flower color and patterns: butterflies preferred H. fulva‐like colored flower whereas the preference of hawkmoths was affected by the color contrast of the bullseye pattern rather than flower color. Both crepuscular and nocturnal hawkmoths consistently preferred flowers with stronger contrast of the UV bullseye pattern, whereas the preference of hawkmoths for flower color was incoherent. Our finding suggests that hawkmoths can use UV‐absorbing/reflecting bullseye patterns for foraging under light‐limited environments and that the intensified bullseye contrast of H. citrina evolved as an adaptation to hawkmoths. Our results also showed the difference of visual systems between pollinators, which may have promoted floral divergence.  相似文献   

12.
13.
Hummingbird flowers are typically red in color but the reasons for this are not well understood. Relatively few studies have examined hummingbird flower color preferences under natural conditions in which flower color varies within a species. We recorded hummingbird visitation rates to flowers that vary in color from yellow to red in a natural hybrid population between red‐ and yellow‐flowered Mimulus aurantiacus subspecies. We also examined whether there were any correlations between color and flower size or nectar content. Finally, we reviewed the literature on hummingbird color choice tests using feeders and flowers. There were no correlations in this population between flower color and flower size, nectar volume, or sugar concentration. Nevertheless, hummingbirds undervisited the two most yellow color classes, overvisited orange flowers, and visited the two most red color classes in proportion to their frequency in the population. While Hummingbirds preferred flowers expressing red pigments to those that did not, the flowers with the most red hue were not the most attractive, as has been observed in similar studies with other species of Mimulus. While feeder studies generally fail to show hummingbird preference for red, all studies using flowers, including those that control all floral traits other than color, find consistent preference for red. Experiments are suggested that might help disentangle hypotheses for why hummingbirds exhibit this preference.  相似文献   

14.
二氢黄酮醇-4-还原酶(DFR)是植物花青素合成过程中的关键酶,能够催化二氢黄酮醇生成无色花青素。该试验以红色和白色比利时杜鹃花(Rhododendron hybridum Hort.)不同器官和不同发育时期的花瓣为实验材料,利用反转录(RT-PCR)和RACE技术克隆RhDFR基因,利用植物酶联免疫试剂盒(ELISA)测定不同发育时期的花瓣RhDFR酶活性,利用qRT-PCR技术定量分析不同器官和不同发育时期的花瓣RhDFR基因,构建pET-28a-RhDFR原核表达载体对RhDFR蛋白进行制备和纯化,为进一步探究杜鹃花DFR基因功能以及花色的分子机理奠定基础。结果表明:(1)成功获得比利时杜鹃花RhDFR基因全长1 253 bp,其开放阅读框1 035 bp,编码344个氨基酸,含有1个NADPH结合保守基序和1个底物结合区域,具有高度保守性;系统进化分析显示,比利时杜鹃花RhDFR蛋白与越橘(Vaccinium corymbosum)DFR蛋白亲缘关系最近。(2)ELISA试剂盒分析显示,比利时杜鹃花不同发育时期的花瓣DFR酶活性呈先上升后下降的趋势,并于红花初开期和白花盛开期的...  相似文献   

15.
Genetic polymorphisms for floral color are interesting phenomena to study because they are likely to be maintained by opposing selective forces. Pollinator preferences may exert direct selection on floral color; however, floral color might also be the indirect target of selection through genetic associations with other traits under selection. Malva moschata (Malvaceae) is a North American species that produces either red or white flowers. In the present study, we present reflectance spectrophotometry data that characterize the nature of floral color variation in this species and show that honey bees and bumble bees should be able to distinguish between the morphs through differential sensitivity at the green (long‐wavelength) photoreceptor. Second, we use a series of phenotypic measures to investigate whether the color morphs differ with respect to other floral traits, vegetative traits or female reproductive success, and use a series of correlation analyses to infer the relative independence of color from these other traits. We found that red‐flowered morphs produced more anthers per flower and had greater leaf area, and that white‐flowered morphs had greater percentage fruit set; however, there were no reproductive success differences between the morphs. The relationship between flower size and anther number was the only correlation that differed between the morphs. Finally, a series of pollinator‐choice experiments showed that bumble bees strongly prefer red morphs in terms of visit frequency and duration, but honey bees have no preference. Taken together, our results suggest that color is rather independent of other phenotypic traits, and that honey bee abundance is likely to play a role in maintaining color variation in this system.  相似文献   

16.
Although the importance of regulatory and functional sequence evolution in generating species differences has been studied to some extent, much less is known about the role of other types of genomic changes, such as fluctuation in gene copy number. Here, we apply analyses of gene function and expression of anthocyanin pigment pathway genes, as well as cosegregation analyses in backcross populations, to examine the genetic changes involved in the shift from blue to red flowers in Andean Iochroma (Solanaceae). We demonstrate that deletion of a gene coding for an anthocyanin pathway enzyme was necessary for the transition to red floral pigmentation. The downregulation of a second pathway gene was also necessary for the novel flower color, and this regulatory pattern parallels the genetic change in the two other red-flowered species in the sister family Convolvulaceae in which flower color change has been examined genetically. Finally, we document a shift in enzymatic function at a third locus, but the importance of this change in the transition to red flowers depends on the exact order with which the three changes occurred. This study shows that gene inactivation or loss can be involved in the origin of phenotypic differences between species, thereby restricting the possibility of reversion to the ancestral state. It also demonstrates that parallel evolution of red flowers in three different species occurs via a common developmental/regulatory change but by mutations in different genes.  相似文献   

17.
To better understand aging in perennials, age‐related changes in the physiology of leaves and flower buds of the Mediterranean shrub, Cistus albidus L. were evaluated. Two groups of different ages (5 and 10 years old), both at advanced developmental stages but of similar size, were compared. Total plant biomass, biomass produced per apical meristem and levels of cytokinins, abscisic acid and jasmonic acid in leaves and flower buds, as well as flower production, were measured. No differences in plant size, vegetative growth rates and levels of phytohormones in leaves were observed between 5‐ and 10‐year‐old plants. However, they showed significant differences in flower bud development; the older plants having reduced vigour, with 29.6% of flowers reaching anthesis compared to 52.5% in the younger plants. Furthermore, endogenous concentrations of zeatin and abscisic acid in flower buds at stage I (start of flower organ formation) were 61% and 41%, respectively, smaller in 10‐ than in 5‐year‐old plants. At stage II (with all flower organs formed), zeatin and abscisic acid concentrations decreased by ca. 90% and 80%, respectively, but differences between age groups were still evident (60% and 29% for zeatin and abscisic acid, respectively). Jasmonic acid levels in flower buds decreased by 80% from stage I to II, but did not differ between age groups. Despite reductions in flower bud vigour, total number of flowers per individual was not significantly different between age groups, so that an age‐related loss in reproductive vigour at the organ level did not lead to a decrease in flower production at the whole plant level.  相似文献   

18.
Darwin recognized that biological diversity has accumulated as a result of both adaptive and nonadaptive processes. Very few studies, however, have addressed explicitly the contribution of nonadaptive processes to evolutionary diversification, and no general procedures have been established for distinguishing between adaptive and nonadaptive processes as sources of trait diversity. I use the diversification of flower colour as a model system for attempting to identify adaptive and nonadaptive causes of trait diversification. It is widely accepted that variation in flower colour reflects direct, adaptive response to divergent selective pressures generated by different pollinators. However, diversification of flower colour may also result from the effects of nonadaptive, pleiotropic relationships with vegetative traits. Floral pigments that have pleiotropic relationships to vegetative pigments may evolve and diversify in at least two nonadaptive ways. (1) Indirect response to selection on the pleiotropically related nonfloral traits may occur (indirect selection). (2) Divergent evolution in response to parallel selective pressures (e.g. selection by pollinators for visually obvious flowers) may occur because populations are at different genetic starting points, and each population follows its own genetic `line of least resistance.' A survey of literature suggests that pleiotropic relationships between flower colour and vegetative traits are common. Phylogenetically informed analyses of comparative data from Dalechampia (Euphorbiaceae) and Acer (Aceraceae), based on trait‐transition probabilities and maximum likelihood, indicated that floral and vegetative pigments are probably pleiotropically related in these genera, and this relationship better explains the diversification of floral colour than does direct selection by pollinators. In Dalechampia pink/purple floral bract colour may have originated by indirect response to selection on stem and leaf pigments. In Acer selection by pollinators for visually obvious flowers may to have led to the evolution of red or purple flowers in lineages synthesizing and deploying red anthocyanins in leaves, and pale‐green or yellow flowers in species not deploying red anthocyanins in vegetative structures. This study illustrates the broader potential of indirect selection and parallel selection on different genetic starting points to contribute to biological diversity, and the value of testing directly for the operation of these nonadaptive diversifying processes.  相似文献   

19.
20.
Cypripedium macranthos sensu lato typically has purple‐pink flowers with no nectar and harvestable pollen. On Rebun Island, Hokkaido, Japan, purple‐pink‐flowered C. macranthos var. macranthos individuals rarely grow among numerous pale‐cream‐flowered C. macranthos var. rebunense plants. In both varieties, flower size is similar, their flowering periods completely overlap, and they share the same pollinator (Bombus pseudobaicalensis). However, in only one of 12 years from 2001 to 2012 did var. macranthos attain an annual fruit‐set ratio (an estimate of pollination success) higher than that of sympatric var. rebunense plants. These findings strongly suggest that in C. macranthos on Rebun Island, flower color results in the differential pollination success, because the pollinator prefers pale‐cream Cypripedium flowers and/or avoids purple‐pink ones, thereby producing pollinator‐mediated selection favoring pale‐cream flowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号