首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The secretory pathway is of vital importance for eukaryotic cells and has a pivotal role in the synthesis, sorting, processing and secretion of a large variety of bioactive molecules involved in intercellular communication. One of the key processes in the secretory pathway concerns the transport of cargo proteins from the ER (endoplasmic reticulum) to the Golgi. Type‐I transmembrane proteins of ~24 kDa are abundantly present in the membranes of the early secretory pathway, and bind the COPI and COPII coat complexes that cover vesicles travelling between the membranes. These p24 proteins are thought to play an important role in the selective transport processes at the ER—Golgi interface, although their exact functioning is still obscure. One model proposes that p24 proteins couple cargo selection in the lumen with vesicle coat recruitment in the cytosol. Alternatively, p24 proteins may furnish subcompartments of the secretory pathway with the correct subsets of machinery proteins. Here we review the current knowledge of the p24 proteins and the various roles proposed for the p24 family members.  相似文献   

2.
3.
Protein O‐glycosylation is important in numerous processes including the regulation of proteolytic processing sites by O‐glycan masking in select newly synthesized proteins. To investigate O‐glycan‐mediated masking using an assay amenable to large‐scale screens, we generated a fluorescent biosensor with an O‐glycosylation site situated to mask a furin cleavage site. The sensor is activated when O‐glycosylation fails to occur because furin cleavage releases a blocking domain allowing dye binding to a fluorogen activating protein. Thus, by design, glycosylation should block furin from activating the sensor only if it occurs first, which is predicted by the conventional view of Golgi organization. Indeed, and in contrast to the recently proposed rapid partitioning model, the sensor was non‐fluorescent under normal conditions but became fluorescent when the Golgi complex was decompartmentalized. To test the utility of the sensor as a screening tool, cells expressing the sensor were exposed to a known inhibitor of O‐glycosylation extension or siRNAs targeting factors known to alter glycosylation efficiency. These conditions activated the sensor substantiating its potential in identifying new inhibitors and cellular factors related to protein O‐glycosylation. In summary, these findings confirm sequential processing in the Golgi, establish a new tool for studying the regulation of proteolytic processing by O‐glycosylation, and demonstrate the sensor's potential usefulness for future screening projects .  相似文献   

4.
5.
Vesicle transport sorts proteins between compartments and is thereby responsible for generating the non‐uniform protein distribution along the eukaryotic secretory and endocytic pathways. The mechanistic details of specific vesicle targeting are not yet well characterized at the molecular level. We have developed a cell‐free assay that reconstitutes vesicle targeting utilizing the recycling of resident enzymes within the Golgi apparatus. The assay has physiological properties, and could be used to show that the two lobes of the conserved oligomeric Golgi tethering complex play antagonistic roles in trans‐Golgi vesicle targeting. Moreover, we can show that the assay is sensitive to several different congenital defects that disrupt Golgi function and therefore cause glycosylation disorders. Consequently, this assay will allow mechanistic insight into the targeting step of vesicle transport at the Golgi, and could also be useful for characterizing some novel cases of congenital glycosylation disorders.   相似文献   

6.
Compartment-specific control of phosphoinositide lipids is essential for cell function. The Sac1 lipid phosphatase regulates endoplasmic reticulum (ER) and Golgi phosphatidylinositol-4-phosphate [PI(4)P] in response to nutrient levels and cell growth stages. During exponential growth, Sac1p interacts with Dpm1p at the ER but shuttles to the Golgi during starvation. Here, we report that a C-terminal region in Sac1p is required for retention in the perinuclear ER, whereas the N-terminal domain is responsible for Golgi localization. We also show that starvation-induced shuttling of Sac1p to the Golgi depends on the coat protein complex II and the Rer1 adaptor protein. Starvation-induced shuttling of Sac1p to the Golgi specifically eliminates a pool of PI(4)P generated by the lipid kinase Pik1p. In addition, absence of nutrients leads to a rapid dissociation of Pik1p, together with its non-catalytical subunit Frq1p, from Golgi membranes. Reciprocal rounds of association/dissociation of the Sac1p lipid phosphatase and the Pik1p/Frq1p lipid kinase complex are responsible for growth-dependent control of Golgi phosphoinositides. Sac1p and Pik1p/Frq1p are therefore elements of a unique machinery that synchronizes ER and Golgi function in response to different growth conditions.  相似文献   

7.
The role of glycosylation in the function of the T2 family of RNases is not well understood. In this work, we examined how glycosylation affects the progression of the T2 RNase Rny1p through the secretory pathway in Saccharomyces cerevisiae. We found that Rny1p requires entering into the ER first to become active and uses the adaptor protein Erv29p for packaging into COPII vesicles and transport to the Golgi apparatus. While inside the ER, Rny1p undergoes initial N‐linked core glycosylation at four sites, N37, N70, N103 and N123. Rny1p transport to the Golgi results in the further attachment of high‐glycans. Whereas modifications with glycans are dispensable for the nucleolytic activity of Rny1p, Golgi‐mediated modifications are critical for its extracellular secretion. Failure of Golgi‐specific glycosylation appears to direct Rny1p to the vacuole as an alternative destination and/or site of terminal degradation. These data reveal a previously unknown function of Golgi glycosylation in a T2 RNase as a sorting and secretion signal .   相似文献   

8.
The organization of the Golgi apparatus is determined in part by the interaction of Rab proteins and their diverse array of effectors. Here, we used multiple approaches to identify and characterize a small subset of effectors that mimicked the effects of Rab6 on Golgi ribbon organization. In a visual‐based, candidate protein screen, we found that the individual depletion of any of three Rab6 effectors, myosin IIA (MyoIIA), Kif20A and Bicaudal D (BicD), was sufficient to suppress Golgi ribbon fragmentation/dispersal coupled to retrograde tether proteins in a manner paralleling Rab6. MyoIIA and Kif20A depletions were pathway selective and suppressed ZW10‐dependent Golgi ribbon fragmentation/dispersal only whereas BicD depletion, like Rab6, suppressed both ZW10‐ and COG‐dependent Golgi ribbon fragmentation. The MyoIIA effects could be produced in short‐term assays by the reversible myosin inhibitor, blebbistatin. At the electron microscope level, the effects of BicD‐depletion mimicked many of those of Rab6‐depletion: longer and more continuous Golgi cisternae and a pronounced accumulation of coated vesicles. Functionally, BicD‐depleted cells were inhibited in transport of newly synthesized VSV‐G protein to the cell surface. In summary, our results indicate small, partially overlapping subsets of Rab6 effectors are differentially important to two tether‐dependent pathways essential to Golgi organization and function.   相似文献   

9.
Insertion mutations that disrupt the function of PHT4;6 (At5g44370) cause NaCI hypersensitivity of Arabidopsis seedlings that is characterized by reduced growth of the primary root, enhanced lateral branching, and swelling of root tips. Mutant phenotypes were exacerbated by sucrose, but not by equiosmolar concentrations of mannitol, and attenuated by low inorganic phosphate in the medium. Protein PHT4;6 belongs to the Major Facilitator Superfamily of permeases that shares significant sequence similarity to mammalian type-I Pi transporters and vesicular glutamate transporters, and is a member of the PHT4 family of putative intracellular phosphate transporters of plants. PHT4;6 localizes to the Golgi membrane and transport studies indicate that PHT4;6 facilitates the selective transport of Pi but not of chloride or inorganic anions. Phenotypic similarities with other mutants displaying root swelling suggest that PHT4;6 likely functions in protein N-glycosylation and cell wall biosynthesis, which are essential for salt tolerance. Together, our results indicate that PHT4;6 transports Pi out of the Golgi lumenal space for the re-cycling of the Pi released from glycosylation processes.  相似文献   

10.
The Golgi apparatus is the main glycosylation and sorting station along the secretory pathway. Its structure includes the Golgi vesicles, which are depleted of anterograde cargo, and also of at least some Golgi‐resident proteins. The role of Golgi vesicles remains unclear. Here, we show that Golgi vesicles are enriched in the Qb‐SNAREs GS27 (membrin) and GS28 (GOS‐28), and depleted of nucleotide sugar transporters. A block of intra‐Golgi transport leads to accumulation of Golgi vesicles and partitioning of GS27 and GS28 into these vesicles. Conversely, active intra‐Golgi transport induces fusion of these vesicles with the Golgi cisternae, delivering GS27 and GS28 to these cisternae. In an in vitro assay based on a donor compartment that lacks UDP‐galactose translocase (a sugar transporter), the segregation of Golgi vesicles from isolated Golgi membranes inhibits intra‐Golgi transport; re‐addition of isolated Golgi vesicles devoid of UDP‐galactose translocase obtained from normal cells restores intra‐Golgi transport. We conclude that this activity is due to the presence of GS27 and GS28 in the Golgi vesicles, rather than the sugar transporter. Furthermore, there is an inverse correlation between the number of Golgi vesicles and the number of inter‐cisternal connections under different experimental conditions. Finally, a rapid block of the formation of vesicles via COPI through degradation of ϵCOP accelerates the cis‐to‐trans delivery of VSVG. These data suggest that Golgi vesicles, presumably with COPI, serve to inhibit intra‐Golgi transport by the extraction of GS27 and GS28 from the Golgi cisternae, which blocks the formation of inter‐cisternal connections .  相似文献   

11.
12.
In animal cells the centrosome is positioned at the cell centre in close association with the nucleus. The mechanisms responsible for this are not completely understood. Here, we report the first characterization of human TBCC‐domain containing 1 (TBCCD1), a protein related to tubulin cofactor C. TBCCD1 localizes at the centrosome and at the spindle midzone, midbody and basal bodies of primary and motile cilia. Knockdown of TBCCD1 in RPE‐1 cells caused the dissociation of the centrosome from the nucleus and disorganization of the Golgi apparatus. TBCCD1‐depleted cells are larger, less efficient in primary cilia assembly and their migration is slower in wound‐healing assays. However, the major microtubule‐nucleating activity of the centrosome is not affected by TBCCD1 silencing. We propose that TBCCD1 is a key regulator of centrosome positioning and consequently of internal cell organization.  相似文献   

13.
14.
The KTR α1,2-mannosyltransferase gene family of Saccharomyces cerevisiae is responsible not only for outer-chain modifications of N -linked oligosaccharides but also for elongation of O -linked mannose residues. To identify genes involved in the elongation step of O -linked oligosaccharide chains in Schizosaccharomyces pombe , we characterized six genes, omh1 + –omh6 +, that share significant sequence similarity to the S. cerevisiae KTR family. Six deletion strains were constructed, each carrying a single disrupted omh allele. All strains were viable, indicating that none of the omh genes was essential. Heterologous expression of a chitinase from S. cerevisiae in the omh mutants revealed that O -glycosylation of chitinase had decreased in omh1 Δ cells, but not in the other mutants, indicating that the other omh genes do not appear to be required for O -glycan synthesis. Addition of the second α1,2-linked mannose residue was blocked in omh1 Δ cells. An Omh1–GFP fusion protein was found to be localized in the Golgi apparatus. These results indicate that Omh1p plays a major role in extending α1,2-linked mannose in the O -glycan pathway in S. pombe .  相似文献   

15.
Oxysterol‐binding protein (OSBP) localizes to endoplasmic reticulum (ER)‐Golgi contact sites where it transports cholesterol and phosphatidylinositol 4‐phosphate (PI‐4P), and activates lipid transport and biosynthetic activities. The PI‐4P phosphatase Sac1 cycles between the ER and Golgi apparatus where it potentially regulates OSBP activity. Here we examined whether the ER‐Golgi distribution of endogenous or ectopically expressed Sac1 influences OSBP activity. OSBP and Sac1 co‐localized at apparent ER‐Golgi contact sites in response to 25‐hydroxycholesterol (25OH), cholesterol depletion and p38 MAPK inhibitors. A Sac1 mutant that is unable to exit the ER did not localize with OSBP, suggesting that sterol perturbations cause Sac1 transport to the Golgi apparatus. Ectopic expression of Sac1 in the ER or Golgi apparatus, or Sac1 silencing, did not affect OSBP localization to ER‐Golgi contact sites, OSBP‐dependent activation of sphingomyelin synthesis, or cholesterol esterification in the ER. p38 MAPK inhibition and retention of Sac1 in the Golgi apparatus also caused OSBP phosphorylation and OSBP‐dependent activation of sphingomyelin synthesis at ER‐Golgi contacts. These results demonstrate that Sac1 expression in either the ER or Golgi apparatus has a minimal impact on the PI‐4P that regulates OSBP activity or recruitment to contact sites.   相似文献   

16.
Prenylated Rab acceptors (PRAs) bind to prenylated Rab proteins and possibly aid in targeting Rabs to their respective compartments. In Arabidopsis, 19 isoforms of PRA1 have been identified and, depending upon the isoforms, they localize to the endoplasmic reticulum (ER), Golgi apparatus and endosomes. Here, we investigated the localization and trafficking of AtPRA1.B6, an isoform of the Arabidopsis PRA1 family. In colocalization experiments with various organellar markers, AtPRA1.B6 tagged with hemagglutinin (HA) at the N-terminus localized to the Golgi apparatus in protoplasts and transgenic plants. The valine residue at the C-terminal end and an EEE motif in the C-terminal cytoplasmic domain were critical for anterograde trafficking from the ER to the Golgi apparatus. The N-terminal region contained a sequence motif for retention of AtPRA1.B6 at the Golgi apparatus. In addition, anterograde trafficking of AtPRA1.B6 from the ER to the Golgi apparatus was highly sensitive to the HA:AtPRA1.B6 level. The region that contains the sequence motif for Golgi retention also conferred the abundance-dependent trafficking inhibition. On the basis of these results, we propose that AtPRA1.B6 localizes to the Golgi apparatus and its ER-to-Golgi trafficking and localization to the Golgi apparatus are regulated by multiple sequence motifs in both the C- and N-terminal cytoplasmic domains.  相似文献   

17.
The vesicle-tethering protein p115 functions in endoplasmic reticulum-Golgi trafficking. We explored the function of homologous region 2 (HR2) of the p115 head domain that is highly homologous with the yeast counterpart, Uso1p. By expression of p115 mutants in p115 knockdown (KD) cells, we found that deletion of HR2 caused an irregular assembly of the Golgi, which consisted of a cluster of mini-stacked Golgi fragments, and gathered around microtubule-organizing center in a microtubule-dependent manner. Protein interaction analyses revealed that p115 HR2 interacted with Cog2, a subunit of the conserved oligomeric Golgi (COG) complex that is known another putative cis-Golgi vesicle-tethering factor. The interaction between p115 and Cog2 was found to be essential for Golgi ribbon reformation after the disruption of the ribbon by p115 KD or brefeldin A treatment and recovery by re-expression of p115 or drug wash out, respectively. The interaction occurred only in interphase cells and not in mitotic cells. These results strongly suggested that p115 plays an important role in the biogenesis and maintenance of the Golgi by interacting with the COG complex on the cis-Golgi in vesicular trafficking.  相似文献   

18.
Membrane fractions of pig cerebellum show Ca2+-ATPase activity and Ca2+ transport due to the presence of the secretory pathway Ca2+-ATPase (SPCA). The SPCA1 isoform shows a wide distribution in the neurons of pig cerebellum, where it is found in the Golgi complex of the soma of Purkinje, stellate, basket and granule cells, and also in more distal components of the secretory pathway associated with a synaptic localization such as in cerebellar glomeruli. The SPCA1 may be involved in loading the Golgi complex and the secretory vesicles of these specific neuronal cell types with Ca2+ and also Mn2+. This study of the cellular and subcellular localization of SPCA1 pumps relative to the sarco(endo) plasmic reticulum Ca2+-ATPase and plasma membrane Ca2+-ATPase pumps hints to a possible specific role of SPCA1 in controlling the luminal secretory pathway Ca2+ (or Mn2+) levels as well as the local cytosolic Ca2+ levels. In addition, it helps to specify the zones that are most vulnerable to Ca2+ and/or Mn2+ dyshomeostasis, a condition that is held responsible of an increasing number of neurological disorders.  相似文献   

19.
We report that microtubule (MT) nucleation at the Golgi apparatus requires AKAP450, a centrosomal γ‐TuRC‐interacting protein that also forms a distinct network associated with the Golgi. Depletion of AKAP450 abolished MT nucleation at the Golgi, whereas depletion of the cis‐Golgi protein GM130 led to the disorganisation of AKAP450 network and impairment of MT nucleation. Brefeldin‐A treatment induced relocalisation of AKAP450 to ER exit sites and concomitant redistribution of MT nucleation capacity to the ER. AKAP450 specifically binds the cis‐side of the Golgi in an MT‐independent, GM130‐dependent manner. Short AKAP450‐dependent growing MTs are covered by CLASP2. Like for centrosome, dynein/dynactin complexes are necessary to anchor MTs growing from the Golgi. We further show that Golgi‐associated AKAP450 has a role in cell migration rather than in cell polarisation of the centrosome–Golgi apparatus. We propose that the recruitment of AKAP450 on the Golgi membranes through GM130 allows centrosome‐associated nucleating activity to extend to the Golgi, to control the assembly of subsets of MTs ensuring specific functions within the Golgi or for transporting specific cargos to the cell periphery.  相似文献   

20.
Apicomplexans are obligate intracellular parasites that invade the host cell in an active process that relies on unique secretory organelles (micronemes, rhoptries and dense granules) localized at the apical tip of these highly polarized eukaryotes. In order for the contents of these specialized organelles to reach their final destination, these proteins are sorted post‐Golgi and it has been speculated that they pass through endosomal‐like compartments (ELCs), where they undergo maturation. Here, we characterize a Toxoplasma gondii homologue of Syntaxin 6 (TgStx6), a well‐established marker for the early endosomes and trans Golgi network (TGN) in diverse eukaryotes. Indeed, TgStx6 appears to have a role in the retrograde transport between ELCs, the TGN and the Golgi, because overexpression of TgStx6 results in the development of abnormally shaped parasites with expanded ELCs, a fragmented Golgi and a defect in inner membrane complex maturation. Interestingly, other organelles such as the micronemes, rhoptries and the apicoplast are not affected, establishing the TGN as a major sorting compartment where several transport pathways intersect. It therefore appears that Toxoplasma has retained a plant‐like secretory pathway .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号