首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: How does species composition change in traditionally managed meadows after mowing has ceased, and in abandoned meadows after re‐introduction of mowing? Are there differences in the dynamics of dry and moderately wet meadows? Location: Zázrivá‐Ple?ivá (19°11′N, 49°16′E), north‐western Slovakia, western Carpathians. Methods: Pairs of experimental plots (mown and unmown) were established to replicate each combination of dry/wet and traditionally managed/abandoned meadows. Changes in species composition were studied over 5 years. The data on changes in species composition was analysed by constrained and unconstrained ordinations, and visualized using Principal Response Curves. Results: Species composition of newly abandoned wet grasslands was changing towards the corresponding long‐abandoned plots even in the first year of abandonment. Similarly, newly established restoration mowing in abandoned dry grasslands rapidly shifted the stand species composition towards that of traditionally managed ones. Nevertheless, 4 year after reintroduction of mowing, the species composition of the restored plots was still far from the target composition. The effect of mowing in abandoned wet grasslands and abandonment in dry grasslands was much less pronounced and slower. Conclusions: Moisture regime is a very important factor determining the management needs of various grassland types. Wet grasslands are much more sensitive to abandonment, with a rapid degradation rate and limited possibilities for restoration, which can be extremely slow. Even in the dry grasslands, that quickly responded to restoration mowing, restoration is a long‐term process.  相似文献   

2.
Mowing and management to reduce nutrient levels have often been successfully used to restore species‐rich grasslands in various parts of Europe. However, such treatments have failed to restore the species‐rich Central European mountain grasslands dominated by Polygonum bistorta. P. bistorta builds an extensive underground rhizome system that monopolizes available nutrients in these nutrient‐poor grasslands, enabling this species to persist at high densities even in the presence of mowing. Therefore, we tested a restoration approach using a factorial combination of fertilization and mowing, as well as a litter removal treatment. The experiment was run over 5 years and species composition response to these treatments was recorded at two spatial scales. Mowing suppressed flowering and cover of P. bistorta and promoted target grassland species and richness. Fertilization prevented nutrient impoverishment and increased height and dominance of the broad‐leaved grasses with which many species‐rich grassland herbs could coexist. The additive effect of the mowing/fertilization treatments was strong enough to act as a driver of P. bistorta suppression and associated community change. The litter removal treatment, however, had little effect on plant composition. The experiment demonstrates that in nutrient‐limited grasslands, increasing nutrient levels in addition to mowing to manage competition for light can be used to control dominants. This contrasts with restoration of systems where after abandonment increased nutrient levels lead to the establishment of tall dominants that suppress other species by competition for light.  相似文献   

3.
Question: What are the long‐term implications of former fertilisation for the ecological restoration of calcareous grasslands? Location: Gerendal, Limburg, The Netherlands. Methods: In 1970, ten permanent plots were established in just abandoned agricultural calcareous grassland under a regime of annual mowing in August. From 1971 to 1979, two different fertiliser treatments were applied twice a year to a subset of the plots (artificial fertiliser with different proportions of nitrogen and phosphorus). The vegetation of the plots was recorded yearly and vegetation biomass samples were taken for peak standing crop and total amounts of nitrogen, phosphorus and potassium. Species composition and floristic diversity were analysed over the research period (1970–2006) and between the treatments, including the use of multivariate techniques (Detrended Correspondence Analysis). Results: In terms of species number, there is a clear optimum 10 to 20 years after fertilisation has been terminated. Afterwards, there is a slow decrease; no new species appear and species of more nutrient‐rich conditions gradually disappear. For the fertilised plots that received a relatively high proportion of N, effects are found only in the first years, whereas, for the plots that received a relatively high proportion of P, long‐term after‐effects are found in species composition, peak standing crop, total amounts of phosphorus in biomass, and in soil phosphorus data. Conclusions: The effect of artificial fertiliser with a large amount of nitrogen disappears in less than ten years when mown in August, including removal of the hay. This is a promising result for restoration of N‐enriched calcareous grasslands, as the applied dose of nitrogen in this experiment largely exceeds the extra input of nitrogen via atmospheric deposition. Application of fertiliser with a large amount of phosphorus, however, has effects even more than 25 years after the last addition. There are no prospects that this effect will become reduced in the near future under the current mowing management.  相似文献   

4.
Nutrient limitation along a productivity gradient in wet meadows   总被引:1,自引:0,他引:1  
Olde Venterink  H.  van der Vliet  R.E.  Wassen  M.J. 《Plant and Soil》2001,234(2):171-179
Conservation management in meadows often focuses on reducing soil fertility and consequently community productivity as to promote and sustain species-rich vegetations. The productivity level to which nutrients are limiting growth is, however, unclear, as well as the relationship between productivity and the type of nutrient limitation. We carried out a fertilization experiment with N, P and K in six annually mown meadows along an aerial phytomass gradient (200–650 g m–2). All meadows were found to be growth-limited by nutrients. Low-productive meadows were N-limited, or N+P co-limited, whereas our higher productive meadows were co-limited by a combination of N, P and/or K. The results from our experiments were compared with the results from 45 other fertilization experiments with N, P and K in grasslands and wetlands (aerial phytomass range 50–1500 g m–2). Our results were consistent in nitrogen being the most frequent (co)-limiting nutrient, and regarding the equal frequence of occurrence of P (co)-limitation and K (co)-limitation (both in ca. 25–30% of all sites). Co-limitation occurred more often in our sites than in the other experiments. There was no clear relationship between aerial phytomass and type of nutrient limitation, except that K (co)-limitation only occurred at sites with phytomass above 200 g m–2, and P (co)-limitation below 600 g m–2. A comparison of productivity and nutrient concentrations in aerial phytomass among two years indicated that the type of nutrient limitation is not a static site characteristic but may vary with dynamic environmental conditions such as soil wetness; drought seems to enhance N-availability which may induce P- and K-limitation.  相似文献   

5.
Question: In fen meadows with Junco‐Molinion plant communities, falling groundwater levels may not lead to a boosted above‐ground biomass production if limitation of nutrients persists. Instead, depending on drainage intensity and micro‐topography, acidification may trigger a shift into drier and more nutrient‐poor plant communities. Location: Nature reserve, central Netherlands, 5 m a.s.l. Methods: Long‐term study (1988‐1997) in a fen meadow along a gradient in drainage intensity at different scales. Results: Above‐ground biomass increased only slightly over ten years, despite a lower summer groundwater table. The accountable factors were probably a limited availability of nutrients (K in the higher well‐drained plots, P in the intermediate plots and N in the lower hardly drained plots), plus removal of hay. Junco‐Molinion species increased in dry sites and Parvo‐caricetea species increased in wet sites, presumably primarily because of soil acidification occurring when rainwater becomes more influential than base‐rich groundwater. The extent of the shift in species composition depends primarily on the drainage intensity and secondarily on microtopography. Local hydrological measures have largely failed to restore wetter and more basic‐rich conditions. Conclusions: Acidification and nutrient removal, leaching and immobilization resulted in the succession towards Junco‐Molinion at the cost of Calthion palustris elements. Lower in the gradient this change was reduced by the presence of buffered groundwater in slightly drained sites. To conserve the typical plant communities of the Junco‐Molinion to Calthion gradient in the long term, further acidification must be prevented, for example by inundation with base‐rich surface water.  相似文献   

6.
To restore species‐rich terrestrial ecosystems on ex‐agricultural land, establishing nutrient limitation for dominant plant growth is essential because in nutrient‐rich soils, fast‐growing species often exclude target species. However, N‐limitation is easier to achieve than P‐limitation (because of a difference in biogeochemical behavior), biodiversity is generally highest under P‐limitation. Commonly used restoration methods to achieve low soil P‐concentrations are either very expensive or take a very long time. A promising restoration technique is P‐mining, an adjusted agricultural technique that aims at depleting soil‐P. High biomass production and hence high P‐removal with biomass are obtained by fertilizing with nutrients other than P. A pot experiment was set up to study P‐mining with Lolium perenne L. on sandy soils with varying P‐concentrations: from an intensively used agricultural soil to a soil near the soil P‐target for species‐rich Nardus grassland. All pots received N‐ and K‐fertilization. The effects of biostimulants on P‐uptake were also assessed by the addition of arbuscular mycorrhiza (Glomus spp.), humic substances or phosphate‐solubilizing bacteria (Bacillus sp. and Pseudomonas spp.). In our P‐rich soil (111 µg POlsen/g), P‐removal rate was high but bioavailable soil‐P did not decrease. At lower soil P‐concentrations (64 and 36 µg POlsen/g), bioavailable soil‐P had decreased but the P‐removal rate had by then dropped 60% despite N‐ and K‐fertilization and despite that the target (<10 µg POlsen/g) was still far away. None of the biostimulants altered this trajectory. Therefore, restoration will still take decades when starting with ex‐agricultural soils unless P‐fertilization history was much lower than average.  相似文献   

7.
Question: What is the contribution of a rise in groundwater level to vegetation restoration of degraded peat meadows compared to abandonment only? Location: Abandoned peat meadows in the central part of The Netherlands. Methods: Comparison of species composition and species abundance of vegetation and seed banks of reference and rewetted peat meadows, using plant trait and seed bank analysis. Results: Vegetation of rewetted meadows shared on average only 27% of their species with the reference meadow, while this was 50% on average for species in the seed bank. Rewetted meadows had a lower total number of species and a lower number of wet grassland and fen species present in the vegetation, but had higher species richness per m2, although evenness was not affected. Rewetting increased the dominance of species of fertile and near neutral habitats, but did not result in an increase of species of wet or waterlogged habitats. Re-wetted meadows were dominated by species relying mainly on vegetative reproduction and species with a low average seed longevity compared to the reference meadow. Conclusion: Rewetting was not effective as a restoration measure to increase plant species diversity or the number of wet grassland and fen species in the vegetation. If no additional restoration management is applied, the seed bank will be depleted of seeds of species of wet grassland or fen habitats, further reducing the chances of successful vegetation restoration.  相似文献   

8.
Question: We studied the development and persistence of the effects of nutrient pulses on biomass production and species composition in a fen meadow. Location: Nature reserve, central Netherlands, 5 m a.s.l. Methods: Single pulse fertilization with N and P in a factorial design on an undrained central and a drained margin site in a species‐rich fen meadow (Cirsio dissecti‐Molinietum). Biomass production and species composition were monitored during four years. Results: At the central site, N addition boosted biomass production, but only during one year. The species composition was not changed. P fertilization increased the biomass production and changed the species composition from a vegetation dominated by Carex panicea to a grassland community with abundant Holcus lanatus, but not before the second year. At the margin site, P fertilization changed the species composition in a similar way, but biomass production was not increased. N fertilization had no effect. At both sites the P induced shift in species composition persisted for four years although the P effect declined during the experiment. Conclusions: The biomass responses show that N was limiting in the central site. Another nutrient, besides N and P (probably K) must have been limiting in the marginal site. The fast decline of the N effect on biomass is ascribed to increased denitrification and biomass removal. The delay in the P effect on biomass and species composition and the persistence of the P effect on species composition are ascribed to fast immobilisation and subsequent slow release of fertilizer P in the peat soil. Recurrence of the P pulses is expected to cause permanent changes in species composition.  相似文献   

9.
Best  Elly P.H.  Jacobs  F.H.H. 《Plant Ecology》2001,155(1):61-73
The restoration of degraded peat-grasslands is an important nature conservation goal in The Netherlands. We investigated the effects of ceased fertilization (15 years) combined with a groundwater-raised water table (6 years) on the production of the peat-grassland vegetation and soil nutrient availability in a meadow. Furthermore, we evaluated whether and how this difference between meadows affected the balances between nutrient inputs and outputs in the ecosystem. We used an adjacent fertilized meadow in which the water table followed agricultural practice as a control. Yield of the grassland vegetation was significantly lower in the wet than in the control meadow. The tissue concentrations of N, P, and K in the harvested vegetation were significantly lower, but those of Ca higher in the wet than in the control meadow. The difference between both meadows significantly affected the annual nitrification rate, but not the annual C and N mineralization rates and the annual net P and K release rates. The difference between both meadows also significantly affected the seasonal nitrification and K release rates. Season exerted a significant effect on the seasonal C and N mineralization and nitrification rates. The elemental balances and relative contributions of the balance terms to elemental inputs and outputs varied considerably with element. Annually, the wet meadow lost N, P and K, while the control meadow gained these elements. The elemental demand of the grassland vegetation in the wet meadow was met for N for a large part by mineralization and for the remainder by atmospheric deposition, for P it was in the same order of magnitude as the net soil-P release, as it was for K. It is to be expected that the soil resources of N, P and K will continue to decrease under a continued regime of ceased fertilization and a raised water table, with those of N decreasing with the same rate, of P morerapidly and of K more slowly than estimated from regressions.  相似文献   

10.
Plant functional traits reflect individual and community ecological strategies. They allow the detection of directional changes in community dynamics and ecosystemic processes, being an additional tool to assess biodiversity than species richness. Analysis of functional patterns in plant communities provides mechanistic insight into biodiversity alterations due to anthropogenic activity. Although studies have consi‐dered of either anthropogenic management or nutrient availability on functional traits in temperate grasslands, studies combining effects of both drivers are scarce. Here, we assessed the impacts of management intensity (fertilization, mowing, grazing), nutrient stoichiometry (C, N, P, K), and vegetation composition on community‐weighted means (CWMs) and functional diversity (Rao's Q) from seven plant traits in 150 grasslands in three regions in Germany, using data of 6 years. Land use and nutrient stoichiometry accounted for larger proportions of model variance of CWM and Rao's Q than species richness and productivity. Grazing affected all analyzed trait groups; fertilization and mowing only impacted generative traits. Grazing was clearly associated with nutrient retention strategies, that is, investing in durable structures and production of fewer, less variable seed. Phenological variability was increased. Fertilization and mowing decreased seed number/mass variability, indicating competition‐related effects. Impacts of nutrient stoichiometry on trait syndromes varied. Nutrient limitation (large N:P, C:N ratios) promoted species with conservative strategies, that is, investment in durable plant structures rather than fast growth, fewer seed, and delayed flowering onset. In contrast to seed mass, leaf‐economics variability was reduced under P shortage. Species diversity was positively associated with the variability of generative traits. Synthesis. Here, land use, nutrient availability, species richness, and plant functional strategies have been shown to interact complexly, driving community composition, and vegetation responses to management intensity. We suggest that deeper understanding of underlying mechanisms shaping community assembly and biodiversity will require analyzing all these parameters.  相似文献   

11.
Abstract. Rich‐fen vegetation influenced by hay‐making in the Sølendet Nature Reserve, Central Norway, was fertilized with N, P and K in a full‐factorial fertilization experiment to investigate the nutrient limitation of plant growth at both community and species levels. Above‐ground biomass, shoot density and nutrient concentration were measured in several species and groups of species at three sites after two years of fertilization. At the community level, the results indicate multiple limitation by N and P in the two least productive rich‐fen communities: one characterized by small sedges and herbs, and the other by high abundance of Menyanthes trifoliata and tall sedges. Increased nutrient availability had no effect on a more highly productive, tall‐growing, spring‐influenced community, indicating no nutrient limitation. The results at the species level correspond well with those at the community level, indicating multiple limitation by N and P in most of the dominant and sub‐dominant species. However, P seems to limit growth more than N in Succisa pratensis, and N seems to limit growth more than P in Carex panicea. Furthermore, Eriophorum angustifolium seems to be limited by K. The results did not show which nutrient limits the growth of Carex dioica, C. lasiocarpa and Trichophorum cespitosum. Indications that growth in low‐productive, boreal rich‐fen communities is generally limited by P was not confirmed.  相似文献   

12.
Questions: Various floodplain communities may differ in their relative abilities to influence water quality through nutrient retention and denitrification. Our main questions were: (1) what is the importance of sediment deposition and denitrification for plant productivity and nutrient retention in floodplains; (2) will rehabilitation of natural floodplain communities (semi‐natural grassland, reedbed, woodland, pond) from agricultural grassland affect nutrient retention? Location: Floodplains of two Rhine distributaries (rivers Ussel and Waal), The Netherlands. Methods: Net sedimentation was measured using mats, denitrification in soil cores by acetylene inhibition and bio‐mass production by clipping above‐ground vegetation in winter and summer. Results: Sediment deposition was a major source of N and P in all floodplain communities. Highest deposition rates were found where water velocity was reduced by vegetation structure (reedbeds) or by a drop in surface elevation (pond). Sediment deposition was not higher in woodlands than in grassland types. Denitrification rates were low in winter but significantly higher in summer. Highest denitrification rates were found in an agricultural grassland (winter and summer) and in the ponds (summer). Plant productivity and nutrient uptake were high in reedbeds, intermediate in agricultural grasslands, ponds and semi‐natural grasslands and very low in woodlands (only understorey). All wetlands were N‐limited, which could be explained by low N:P ratios in sediment. Conclusions: Considering Rhine water quality: only substantial P‐retention is expected because, relative to the annual nutrient loads in the river, the floodplains are important sinks for P, but much less for N. Rehabilitation of agricultural grasslands into ponds or reedbeds will probably be more beneficial for downstream water quality (lower P‐concentrations) than into woodlands or semi‐natural grasslands.  相似文献   

13.
Abstract. Question: What is the long‐term influence of nutrient availability, productivity and soil pH on grassland community organization? Location: Ukulinga research farm, KwaZulu‐Natal, South Africa. Methods: The influence of fertilization on soil pH, nitrogen (N) and phosphorus (P) on variation in plant traits, community composition and species richness were examined in a 50‐year grassland fertilization experiment. Results: Averaged over 30 years, above‐ground net primary production (ANPP) was 337, 428 and 518 g.m‐2 in sites not fertilized, fertilized with N, and fertilized with N plus P respectively. ANPP depended directly on N‐fertilization but not on P‐fertilization or liming, and responded positively to the interaction of N (first limiting nutrient) and P (second limiting nutrient). Short narrow‐leaved grass species —Themeda triandra, Tristachya leucothrix and Setaria nigrirostris— dominated sites of lowest ANPP where N was limiting (unfertilized, P‐fertilized or limed sites). A tall narrow‐leaved species, Eragrostis curvula, dominated sites of intermediate ANPP where P was limiting (N‐fertilized sites). By contrast, a tall broad‐leaved species, Panicum maximum, dominated the most productive sites where neither N nor P were limiting (N‐ and P‐fertilized sites). Certain species responded to liming and type of N‐fertilizer apparently because of their effects on soil pH. N‐fertilization reduced the density of herbaceous dicots (forbs) from 14 (unfertilized) to two (high N, no P, no lime) and five species per m2 (high N, no P, limed). This effect was attributed to increased ANPP and a decrease in soil pH from 4.6 (KCl) in unfertilized sites to 3.49 (high N, no lime) and 4.65 (high N and lime). Soil acidification had no effect on grass species richness but influenced the abundance of certain species. Conclusions: Grassland community organization is determined not only by the influence of N availability, but also by the hierarchical interaction of N and P availability, in part through their compounded effect on ANPP, and by individualistic species responses to soil pH.  相似文献   

14.
This study investigated seasonal patterns in stoichiometric ratios, nutrient resorption characteristics, and nutrient use strategies of dominant tree species at three successional stages in subtropical China, which have not been fully understood. Fresh leaf and leaf litterfall samples were collected in growing and nongrowing seasons for determining the concentrations of carbon (C), nitrogen (N), and phosphorus (P). Then, stoichiometric ratios (i.e., C:N, C:P, N:P, and C:N:P) and resorption parameters were calculated. Our results found that there was no consistent variation in leaf C:N and C:P ratios among different species. However, leaf N:P ratios in late‐successional species became significantly higher, indicating that P limitation increases during successional development. Due to the P limitation in this study area, P resorption efficiency and proficiency were higher than corresponding N resorption parameters. Dominant tree species at early‐successional stage adopted “conservative consumption” nutrient use strategy, whereas the species at late‐successional stage inclined to adopt “resource spending” strategy.  相似文献   

15.
In grazed semiarid steppe ecosystems, much attention has been paid to aspects of growth limitation by water. So far, potential limitation of primary production by plant nutrients was rarely considered. This knowledge is essential for identification of sustainable land-use practices in these large and important ecosystems on the background of over-exploitation and climate change. In the present study plant nutrient concentrations and ratios were investigated with factorial additions of water and N fertilizer at two sites with contrasting soil nutrient availability. Combined analysis of nutrient concentrations, contents, biomass production, and plant N:P ratios consistently confirmed primary growth limitation by water and a strong N limitation when sufficient amounts of water were supplied. P limitation only occurred at the site with low P availability when in addition to the natural supply, water and N fertilizer were given. According to reported thresholds of N:K and K:P ratios, K was not limiting in any plot. The observed nutritional patterns in the plant community were related to the dynamics of species composition and their specific nutrient status. Stipa grandis had the highest N:P ratio whereas Artemisia frigida showed lowest N:P. These nutrient characteristics were related to growth strategies of dominant species. Accordingly, the relative biomass contribution of S. grandis and A. frigida strongly affected the nutrient status of the plant community. Plant N:P ratios indicate the relative limitation by N or P in the semiarid grasslands under sufficient water supply, but other methods of nutritional diagnosis should be used when plant N:P ratios remain below critical values.  相似文献   

16.
Restoration strategies for wet grasslands in Northern Germany   总被引:1,自引:0,他引:1  
Wet meadows of the Calthion type are strongly endangered ecosystems in Northern Germany due to agricultural intensification and abandonment. Empirical data of biocoenotic structures, hydrologic parameters, nutrient budgets and soil structure are used for an integrated evaluation of differently degenerated wet grasslands on peat soils (mesotrophic and eutrophic Calthion, Lolio-Potentillion, abandoned wet meadows) with respect to their functions in the landscape. Based on the evaluation of the investigated ecosystems two specific management targets are derived: (1) the maintenance and restoration of Calthion systems from degenerated states to re-establish high biocoenotic diversity and to avoid high nutrient leakages; (2) The restoration of the systems functioning as nutrient sinks. The potentials and prerequisites for the development of the investigated systems and suitable management measures concerning these two targets are described, focussing on groundwater dynamics, phytomass production, nutrient losses and the re-establishment of typical plant species. Our results illustrate that referring to target 1 none of the management measures discussed are suitable to restore strongly degenerated Lolio-Potentillion systems to Calthion systems completely. The limited restoration success is caused by partially irreversible changes of the biotic and abiotic properties of the Lolio-Potentillion sites. A re-development of the mesotrophic Calthion from eutrophic Calthion sites or abandoned wet meadows seems to be impossible. From this point of view restoration efforts should mainly focus on the preservation and maintenance of near-natural Calthion ecosystems. Nevertheless, referring to the high portion of Lolio-Potentillion in the landscape of Northern Germany, it is essential to reduce their ecological function as a nutrient source. This could be achieved by moderate rewetting and harvesting. For strongly degenerated grasslands, which can hardly be restored according to target 1, the establishment of eutrophic swamps is a desired development target (target 2). A suitable measure for this target is the drastic rising of the groundwater level. But we must take into account that the current knowledge about the nutrient retention function, resulting from this management measure, is not sufficient to predict this function in detail for former intensively used fen ecosystems. The presented interrelationships and management alternatives are integrated into a knowledge based modelling system to support decision making.  相似文献   

17.

Aim

To assess vegetation changes in montane fens and wet meadows and their causes over 38 years.

Location

Wetlands, Jura Mountains (Switzerland and France).

Methods

Plots were inventoried in 1974 and re‐located in 2012 (quasi‐permanent plots) on the basis of sketches to assess changes in plant communities. The 110 plots belonged to five phytosociological alliances, two in oligotrophic fens (Caricion davallianae, Caricion fuscae) and three in wet meadows (Calthion, Molinion, Filipendulion). Changes between surveys were assessed with NMDS, and changes in species richness, Simpson diversity, species cover and frequency and the causes of these changes were evaluated by comparing ecological indicator values.

Results

Changes in species composition varied between alliances, with a general trend towards more nutrient‐rich flora with less light at ground level. Species diversity declined, with a marked decreasing trend for the typical species of each alliance. These species were partly replaced by species belonging to nitrophilous and mesophilous grasslands. However, no trend towards drier conditions was detected in these wetlands. The largest changes, with an important colonization by nitrophilous species, occurred in the Swiss sites, where grazing was banned 25 years ago. As a result of floral shifts, many plots previously belonging to fens or wet mesotrophic meadows shifted to an alliance of the wet meadows, generally Filipendulion. Moreover, communities showed a slight trend towards more thermophilous flora.

Conclusions

The investigated wetlands in the Jura Mountains have suffered mainly from eutrophication due to land‐use abandonment and N deposition, with a loss of typical species. Areas with constant land use (grazing or mowing) showed less marked changes in species composition. The most important action to conserve these wetlands is to maintain or reintroduce the traditional practices of extensive mowing and livestock grazing in the wetlands, especially in areas where they were abandoned 25 years ago. This previous land‐use change was intended to improve fen conservation, but it was obviously the wrong measure for conservation purposes.  相似文献   

18.
Question: Do tissue element concentrations at the individual species level vary along major vegetation gradients in wetlands, and can they indicate environmental conditions? Location: West Carpathians. Methods: Total plant species composition was recorded in plots distributed along a poor to rich gradient within spring fens and along the gradient from fens to wet meadows. Eriophorum angustifolium (Cyperaceae) and three broadleaf dicotyledonous herb species were collected from the vegetation plots. Tissue N, P, K, Ca and Fe concentrations, N:P and N:K ratios of the species were determined. Each variable was correlated with the sample scores along the first two axes of the DCA ordination, which represented the two main vegetation gradients. Results: K and Ca concentrations in a particular species correlated well with the vegetation gradients, thus indicating changes in the element availability to the species. The trends were sometimes contradictory to known patterns at the community level, but the differences could be ecologically interpreted. Contrary to Ca and K, patterns in N, P and Fe concentration appeared to be more species‐specific. E. angustifolium had a lower K and Ca concentration than the broadleaf herbs. Conclusions: Compared to community‐level measurements, element concentrations in individual species correlated less with observed vegetation gradients. Trends found at the species level may indicate changes in ecological conditions affecting the species, although they need not correspond with trends found at the community level. We conclude that the species‐level approach cannot substitute, but can advance, the community‐level approach in searching for mechanisms underlying vegetation gradients within wetlands.  相似文献   

19.
Abstract. We studied the restoration success of flood plain meadows in the northern Upper Rhine valley, where between 1988 and 1992, 35 ha of arable land was converted into grassland and subsequently managed for nature conservation. Remnant populations of typical alluvial meadow species were found in old meadows and along drainage ditches that dissect the whole area. We analysed the site conditions and phytosociological relevés in old and new meadows. Small differences in site parameters between old and new meadows contrasted with a clear floristic differentiation between the two meadow types. The vegetation of old meadows was much more differentiated along prevailing environmental gradients than the vegetation of new meadows. Despite the favourable site conditions for the re‐establishment of species‐rich meadows on the former arable land, restoration success was limited to the vicinity of remnant stands. In contrast to old meadows, indicator species of new grassland were still typical species of regularly disturbed ruderal and arable habitats, often capable of building up a persistent seed bank. The precise mapping of 23 target species revealed that even wind dispersal predominantly leads to re‐establishment in the close circumference of parent plants. We found no indication that regular flooding, hay‐making and autumnal grazing had an impact on recolonization of newly created grassland. Even under favourable conditions for the re‐establishment of target species, restoration success in alluvial meadows proved to be strongly dispersal limited. We discuss the implications of our findings for future restoration management in grasslands.  相似文献   

20.
Plant resorption of multiple nutrients during leaf senescence has been established but stoichiometric changes among N, P and K during resorption and after fertilization are poorly understood. We anticipated that increased N supply would lead to further P limitation or co-limitation with N or K [i.e. P-(co)limitation], decrease N resorption and increase P and K resorption, while P and K addition would decrease P and K resorption and increase N resorption. Furthermore, Ca would accumulate while Mg would be resorbed during leaf senescence, irrespective of fertilization. We investigated the effect of N, P and K addition on resorption in two evergreen shrubs (Chamaedaphne calyculata and Rhododendron groenlandicum) in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada. In general, N addition caused further P-(co)limitation, increased P and K resorption efficiency but did not affect N resorption. P and K addition did not shift the system to N limitation and affect K resorption, but reduced P resorption proficiency. C. calyculata resorbed both Ca and Mg while R. groenlandicum resorbed neither. C. calyculata showed a higher resorption than R. groenlandicum, suggesting it is better adapted to nutrient deficiency than R. groenlandicum. Resorption during leaf senescence decreased N:P, N:K and K:P ratios. The limited response of N and K and the response of P resorption to fertilization reflect the stoichiometric coupling of nutrient cycling, which varies among the two shrub species; changes in species composition may affect nutrient cycling in bogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号