首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
γ‐Secretase is a transmembrane protease complex responsible for the processing of a multitude of type 1 transmembrane proteins, including amyloid precursor protein (APP) and Notch. A functional complex is dependent on the assembly of four proteins: presenilin (PS), nicastrin, Aph‐1 and Pen‐2. Little is known about how the substrates are selected by γ‐secretase, but it has been suggested that γ‐secretase associated proteins (GSAPs) could be of importance. For instance, it was recently reported from studies in cell lines that TMP21, a transmembrane protein involved in trafficking, binds to γ‐secretase and regulates the processing of APP‐derived substrates without affecting Notch cleavage. Here, we present an efficient and selective method for purification and analysis of γ‐secretase and GSAPs. Microsomal membranes were prepared from rat or human brain and incubated with a γ‐secretase inhibitor coupled to biotin via a long linker and a S‐S bridge. After pulldown using streptavidin beads, bound proteins were eluted under reducing conditions and digested by trypsin. The tryptic peptides were subjected to LC‐MS/MS analysis, and proteins were identified by sequence data from MS/MS spectra. All of the known γ‐secretase components were identified. Interestingly, TMP21 and the PS associated protein syntaxin1 were associated to γ‐secretase in rat brain. We suggest that the present method can be used for further studies on the composition of the γ‐secretase complex.  相似文献   

2.
The 19‐transmembrane, multisubunit γ‐secretase complex generates the amyloid β‐peptide (Aβ) of Alzheimer's disease (AD) by an unusual intramembrane proteolysis of the β‐amyloid precursor protein. The complex, which similarly processes many other type 1 transmembrane substrates, is composed of presenilin, Aph1, nicastrin, and presenilin enhancer (Pen‐2), all of which are necessary for proper complex maturation and enzymatic activity. Obtaining a high‐resolution atomic structure of the intact complex would greatly aid the rational design of compounds to modulate activity but is a very difficult task. A complementary method is to generate structures for each individual subunit to allow one to build a model of the entire complex. Here, we describe a method by which recombinant human Pen‐2 can be purified from bacteria to > 95% purity at milligram quantities per liter, utilizing a maltose binding protein tag to both increase solubility and facilitate purification. Expressing the same construct in mammalian cells, we show that the large N‐terminal maltose binding protein tag on Pen‐2 still permits incorporation into the complex and subsequent presenilin‐1 endoproteolysis, nicastrin glycosylation and proteolytic activity. These new methods provide valuable tools to study the structure and function of Pen‐2 and the γ‐secretase complex.

  相似文献   


3.
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria‐associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM‐associated proteins and enhanced ER to mitochondria Ca2+ transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β‐peptide (Aβ)‐related neuronal models. Here, we report that siRNA knockdown of mitofusin‐2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca2+ transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra‐ and extracellular Aβ40 and Aβ42. Analysis of γ‐secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ‐secretase complex function. Amyloid‐β precursor protein (APP), β‐site APP‐cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER–mitochondria contact affects γ‐secretase activity and Aβ generation. Increased ER–mitochondria contact results in lower γ‐secretase activity suggesting a new mechanism by which Aβ generation can be controlled.  相似文献   

4.
γ‐secretase is a protease complex with at least four components: presenilin, nicastrin (NCT), anterior pharynx‐defective 1 (Aph‐1), and presenilin enhancer 2 (Pen‐2). In this study, using knockout cell lines and small interfering RNA technology, our data demonstrated that the disappeared presenilin 1 C‐terminal fragment (PS1C) caused by knockdown of pen‐2 or knockout of NCT or Aph‐1 was recovered by the addition of proteasome inhibitors, indicating that Pen‐2, as well as NCT and Aph‐1α, is dispensable for presenilin endoproteolysis. Our data also demonstrate that the formation of the nicastrin‐Aph‐1 subcomplex plays not only an important role in γ‐secretase complex assembly but also in recruiting substrate C‐terminal fragment of amyloid precursor protein generated by β‐cleavage. Ablating any one component resulted in the instability of other components of the γ‐secretase complex, and the presence of all three of the other components is required for full maturation of NCT.  相似文献   

5.
γ-Secretase is composed of the four membrane proteins presenilin, nicastrin, Pen2, and Aph1. These four proteins assemble in a coordinated and regulated manner into a high molecular weight complex. The subunits constitute a total of 19 transmembrane domains (TMD), with many carrying important amino acids involved in catalytic activity, interaction with other subunits, or in ER retention/retrieval of unassembled subunits. We here focus on TMD4 of presenilin 1 (PS1) and show that a number of polar amino acids are critical for γ-secretase assembly and function. An asparagine, a threonine, and an aspartate form a polar interface important for endoplasmic reticulum retention/retrieval. A single asparagine in TMD4 of PS1 is involved in a protein-protein interaction by binding to another asparagine in Pen2. Intriguingly, a charged aspartate in TMD4 is critical for γ-secretase activity, most likely by stabilizing the newly formed complex.  相似文献   

6.
Understanding the underlying mechanisms by which a normal cell avoids the oncogenic potential of MUC1 signaling requires further definition of the pathways by which the MUC1 cytoplasmic tail is processed in both normal and tumor‐derived cells. In the present study we describe the processing pathway initiated by TACE/ADAM17 cleavage of MUC1. Utilizing the human uterine epithelial cell line, HES, derived from normal endometrium, we show that endogenous full length MUC1 undergoes regulated intramembranous proteolysis mediated by presenillin‐dependent γ‐secretase. Cytokine‐stimulated HES cells exposed to γ‐secretase inhibitors accumulated a membrane‐associated 15 kDa fragment of the MUC1 C‐terminal subunit (CTF15). Inhibitors of TACE/ADAM17‐mediated shedding inhibited accumulation of MUC1‐CTF15 and MUC1 ectodomain release to a similar extent consistent with MUC1‐CTF15 being a product of TACE/ADAM17 action. Reduction of catalytically active γ‐secretase complex by nicastrin siRNA treatment also resulted in CTF15 accumulation. Furthermore, mature nicastrin, the substrate receptor for γ‐secretase, co‐immunoprecipitated with CTF15 in the presence of γ‐secretase inhibitors indicating the formation of CTF15: nicastrin complexes. MUC1‐CTF15 accumulation in response to γ‐secretase inhibition was demonstrated in both normal and tumor‐derived cells from humans and mice indicating that this processing pathway exists in many cell contexts. We did not detect products of MUC1 cleavage by γ‐secretase in the presence of various proteasomal inhibitors indicating that subsequent degradation is either non‐proteasomal or extremely efficient. We suggest that this efficient pathway attenuates potential signaling mediated by cytoplasmic tail fragments. J. Cell. Biochem. 108: 802–815, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid‐β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ‐secretase internalization. Co‐immunoprecipitation studies establish that γ‐secretase associates with CRFR1; this is mediated by β‐arrestin binding motifs. Additionally, CRFR1 and γ‐secretase co‐localize in lipid raft fractions, with increased γ‐secretase accumulation upon CRF treatment. CRF treatment also increases γ‐secretase activity in vitro, revealing a second, receptor‐independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ‐secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ‐secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ‐secretase.  相似文献   

8.
Notch signaling is critical to animal development, and its dysregulation leads to human maladies ranging from birth defects to cancer. Although endocytosis is currently thought to promote signal activation by delivering activated Notch to endosome‐localized γ‐secretase, the data are controversial and the mechanisms that control Notch endocytosis remain poorly defined. Here, we investigated the relationship between Notch internalization and signaling. siRNA‐mediated depletion studies reveal that Notch endocytosis is clathrin‐dependent and requires epsin1, the adaptor protein complex (AP2) and Nedd4. Moreover, we show that epsin1 interaction with Notch is ubiquitin‐dependent. Contrary to the current model, we show that internalization defects lead to elevated γ‐secretase‐mediated Notch processing and downstream signaling. These results indicate that signal activation occurs independently of Notch endocytosis and that γ‐secretase cleaves Notch at the plasma membrane. These observations support a model where endocytosis serves to downregulate Notch in signal‐receiving cells.  相似文献   

9.
The four‐subunit protease complex γ‐secretase cleaves many single‐pass transmembrane (TM) substrates, including Notch and β‐amyloid precursor protein to generate amyloid‐β (Aβ), central to Alzheimer's disease. Two of the subunits anterior pharynx‐defective 1 (APH‐1) and presenilin (PS) exist in two homologous forms APH1‐A and APH1‐B, and PS1 and PS2. The consequences of these variations are poorly understood and could affect Aβ production and γ‐secretase medicine. Here, we developed the first complete structural model of the APH‐1B subunit using the published cryo‐electron microscopy (cryo‐EM) structures of APH1‐A (Protein Data Bank: 5FN2, 5A63, and 6IYC). We then performed all‐atom molecular dynamics simulations at 303 K in a realistic bilayer system to understand both APH‐1B alone and in γ‐secretase without and with substrate C83‐bound. We show that APH‐1B adopts a 7TM topology with a water channel topology similar to APH‐1A. We demonstrate direct transport of water through this channel, mainly via Glu84, Arg87, His170, and His196. The apo and holo states closely resemble the experimental cryo‐EM structures with APH‐1A, however with subtle differences: The substrate‐bound APH‐1B γ‐secretase was quite stable, but some TM helices of PS1 and APH‐1B rearranged in the membrane consistent with the disorder seen in the cryo‐EM data. This produces different accessibility of water molecules for the catalytic aspartates of PS1, critical for Aβ production. In particular, we find that the typical distance between the catalytic aspartates of PS1 and the C83 cleavage sites are shorter in APH‐1B, that is, it represents a more closed state, due to interactions with the C‐terminal fragment of PS1. Our structural‐dynamic model of APH‐1B alone and in γ‐secretase suggests generally similar topology but some notable differences in water accessibility which may be relevant to the protein's existence in two forms and their specific function and location.  相似文献   

10.
The two presenilin‐1 (PS1) and presenilin‐2 (PS2) homologs are the catalytic core of the γ‐secretase complex, which has a major role in cell fate decision and Alzheimer's disease (AD) progression. Understanding the precise contribution of PS1‐ and PS2‐dependent γ‐secretases to the production of β‐amyloid peptide (Aβ) from amyloid precursor protein (APP) remains an important challenge to design molecules efficiently modulating Aβ release without affecting the processing of other γ‐secretase substrates. To that end, we studied PS1‐ and PS2‐dependent substrate processing in murine cells lacking presenilins (PSs) (PS1KO, PS2KO or PS1‐PS2 double‐KO noted PSdKO) or stably re‐expressing human PS1 or PS2 in an endogenous PS‐null (PSdKO) background. We characterized the processing of APP and Notch on both endogenous and exogenous substrates, and we investigated the effect of pharmacological inhibitors targeting the PSs activity (DAPT and L‐685,458). We found that murine PS1 γ‐secretase plays a predominant role in APP and Notch processing when compared to murine PS2 γ‐secretase. The inhibitors blocked more efficiently murine PS2‐ than murine PS1‐dependent processing. Human PSs, especially human PS1, expression in a PS‐null background efficiently restored APP and Notch processing. Strikingly, and contrary to the results obtained on murine PSs, pharmacological inhibitors appear to preferentially target human PS1‐ than human PS2‐dependent γ‐secretase activity.  相似文献   

11.
A wide variety of cellular processes and signaling events are regulated by the proteolytic enzyme γ‐secretase. Notch‐1 is one of the substrates of γ‐secretase and its role in the regulation of muscle differentiation has been well described. Importantly, besides Notch‐1, a number of proteins have been identified to undergo proteolysis by γ‐secretase. To date, the specific role of γ‐secretase during embryonic skeletal muscle differentiation has not been studied. Therefore, we address this question through the analysis of in vitro grown chick myogenic cells during the formation of multinucleated myotubes. The γ‐secretase inhibitor DAPT (N‐N[‐(3,5‐Difluorophenacetyl‐l ‐alanyl)]‐S‐328 phenylglycine‐t‐butyl‐ester) induces muscle hypertrophy. Knockdown of Notch‐1 using siRNA specific to chick shows no significant effect in myotube size, suggesting that γ‐secretase‐dependent effects on muscle hypertrophy in chick myogenic cells are Notch‐1‐independent. We also investigate the effects of γ‐secretase inhibition in the whole proteomic profile of chick myogenic cells. We identified 276 differentially expressed proteins from Label‐free proteomic approach. Data overview of interaction network obtained from STRING show that after γ‐secretase inhibition cells exhibited imbalance in protein metabolism, cytoskeleton/adhesion, and Sonic Hedgehog signaling. The collection of these results provides new insights into the role of γ‐secretase in skeletal muscle hypertrophy.  相似文献   

12.
gamma-Secretase is involved in the production of amyloid beta-peptide, which is the principal component of amyloid plaques in the brains of patients with Alzheimer disease. gamma-Secretase is a complex composed of presenilin (PS), nicastrin, anterior pharynx-defective phenotype 1 (Aph1) and PS enhancer 2 (Pen2). We previously proposed a mechanism of complex assembly by which unassembled subunits are retained in the endoplasmic reticulum (ER) and only the fully assembled complex is exported from the ER. We have now identified Retention in endoplasmic reticulum 1 (Rer1) as a protein that is involved in the retention/retrieval of unassembled Pen2 to the ER. Direct binding of unassembled Pen2 to Rer1 is mediated by the first transmembrane domain of Pen2, and a conserved asparagine in this domain is required. Downregulation of Rer1 leads to increased surface localization of Pen2, whereas overexpression of Rer1 stabilizes unassembled Pen2. To our knowledge, Rer1 is the first identified interaction partner of mammalian transmembrane-based retention/retrieval signals.  相似文献   

13.
An important pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid‐beta (Aβ) peptides in the brain parenchyma, leading to neuronal death and impaired learning and memory. The protease γ‐secretase is responsible for the intramembrane proteolysis of the amyloid‐β precursor protein (APP), which leads to the production of the toxic Aβ peptides. Thus, an attractive therapeutic strategy to treat AD is the modulation of the γ‐secretase activity, to reduce Aβ42 production. Because phosphorylation of proteins is a post‐translational modification known to modulate the activity of many different enzymes, we used electrospray (LC‐MS/MS) mass spectrometry to identify new phosphosites on highly purified human γ‐secretase. We identified 11 new single or double phosphosites in two well‐defined domains of Presenilin‐1 (PS1), the catalytic subunit of the γ‐secretase complex. Next, mutagenesis and biochemical approaches were used to investigate the role of each phosphosite in the maturation and activity of γ‐secretase. Together, our results suggest that the newly identified phosphorylation sites in PS1 do not modulate γ‐secretase activity and the production of the Alzheimer's Aβ peptides. Individual PS1 phosphosites shall probably not be considered therapeutic targets for reducing cerebral Aβ plaque formation in AD.

  相似文献   


14.
Aph‐1 is a multipass transmembrane protein and an essential component of the Presenilin (Psn)‐mediated γ‐secretase complex. During protease assembly, Aph‐1 stabilizes the newly synthesized Psn holoprotein to facilitate generation of the active form of Psn, which is a Psn‐NTF/Psn‐CTF heterodimer produced through a Presenilinase‐initiated endoproteolytic cleavage of the Psn holoprotein. Although it is clear that loss of Aph‐1 activity leads to failure of Psn heterodimer formation, little is understood about whether Aph‐1 plays a role in regulating γ‐secretase activity in addition to assisting Psn maturation. Using various modified Psn forms that do not require endoproteolysis or have a large deletion of the cytosolic loop, we show that in Drosophila Aph‐1 is still required for γ‐secretase activity independent of its role in promoting Psn endoproteolysis. In addition, our results indicate that Aph‐1 is required to promote cell survival in the wing imaginal disc; aph‐1 mutant cells are lost either through cell death or because of a defect in cell proliferation. This function of Aph‐1 is independent of its role in regulating γ‐secretase activity, but possibly involves downregulating the activity of uncleaved Psn holoprotein. genesis 47:169–174, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Intramembrane proteases execute fundamental biological processes ranging from crucial signaling events to general membrane proteostasis. Despite the availability of structural information on these proteases, it remains unclear how these enzymes bind and recruit substrates, particularly for the Alzheimer's disease‐associated γ‐secretase. Systematically scanning amyloid precursor protein substrates containing a genetically inserted photocrosslinkable amino acid for binding to γ‐secretase allowed us to identify residues contacting the protease. These were primarily found in the transmembrane cleavage domain of the substrate and were also present in the extramembranous domains. The N‐terminal fragment of the catalytic subunit presenilin was determined as principal substrate‐binding site. Clinical presenilin mutations altered substrate binding in the active site region, implying a pathogenic mechanism for familial Alzheimer's disease. Remarkably, PEN‐2 was identified besides nicastrin as additional substrate‐binding subunit. Probing proteolysis of crosslinked substrates revealed a mechanistic model of how these subunits interact to mediate a stepwise transfer of bound substrate to the catalytic site. We propose that sequential binding steps might be common for intramembrane proteases to sample and select cognate substrates for catalysis.  相似文献   

16.
Yeast Sec12p is a type II transmembrane protein in the ER, which is essential for the formation of transport vesicles. From biochemical and morphological lines of evidence, we have proposed that Sec12p is localized to the ER by two mechanisms: static retention in the ER and dynamic retrieval from the early Golgi compartment. We have also shown that Rer1p, a membrane protein in the Golgi, is required for correct localization of Sec12p. In the present study, we have performed a systematic analysis to determine the ER localization signals in Sec12p corresponding to these two mechanisms. Both the transmembrane domain (TMD) and the NH2-terminal cytoplasmic domain of Sec12p show the ability to localize the protein to the ER. The effect of the TMD is potent and sufficient by itself for the ER localization and is strongly dependent on Rer1p. On the other hand, the cytoplasmic domain shows a moderate ER-localization capability which is independent of Rer1p. The rate of mannosyl modification has been measured to distinguish between retention and retrieval. The cytoplasmic domain significantly delays the transport from the ER to the cis-Golgi. In contrast, the TMD shows only a subtle retardation in the transport from the ER to the cis-Golgi but strictly prevents the transport beyond there. From these observations, we conclude that the TMD mainly acts as the retrieval signal and the cytoplasmic domain contains the retention signal. This study not only supports the two-mechanisms hypothesis but also provides powerful tools to dissect the two.  相似文献   

17.
Hepatitis C virus (HCV) glycoproteins E1 and E2 assemble to form a noncovalent heterodimer which, in the cell, accumulates in the endoplasmic reticulum (ER). Contrary to what is observed for proteins with a KDEL or a KKXX ER-targeting signal, the ER localization of the HCV glycoprotein complex is due to a static retention in this compartment rather than to its retrieval from the cis-Golgi region. A static retention in the ER is also observed when E2 is expressed in the absence of E1 or for a chimeric protein containing the ectodomain of CD4 in fusion with the transmembrane domain (TMD) of E2. Although they do not exclude the presence of an intracellular localization signal in E1, these data do suggest that the TMD of E2 is an ER retention signal for HCV glycoprotein complex. In this study chimeric proteins containing the ectodomain of CD4 or CD8 fused to the C-terminal hydrophobic sequence of E1 were shown to be localized in the ER, indicating that the TMD of E1 is also a signal for ER localization. In addition, these chimeric proteins were not processed by Golgi enzymes, indicating that the TMD of E1 is responsible for true retention in the ER, without recycling through the Golgi apparatus. Together, these data suggest that at least two signals (TMDs of E1 and E2) are involved in ER retention of the HCV glycoprotein complex.  相似文献   

18.
19.
Intramembrane proteolysis by γ‐secretases plays major roles in disease pathology and cellular signalling, yet the dynamics of these enzyme complexes and how they recognize substrates remains poorly understood. New work in The EMBO Journal utilizes photo‐affinity cross‐linking to map APP interactions to different γ‐secretase subunits, suggesting a succession of recruitment and engagement steps that lead up to substrate cleavage.  相似文献   

20.
γ‐Secretase plays a central role in the generation of the Alzheimer disease‐causing amyloid β‐peptide (Aβ) from the β‐amyloid precursor protein (APP) and is thus a major Alzheimer′s disease drug target. As several other γ‐secretase substrates including Notch1 and CD44 have crucial signaling functions, an understanding of the mechanism of substrate recognition and cleavage is key for the development of APP selective γ‐secretase‐targeting drugs. The γ‐secretase active site domain in its catalytic subunit presenilin (PS) 1 has been implicated in substrate recognition/docking and cleavage. Highly critical in this process is its GxGD active site motif, whose invariant glycine residues cannot be replaced without causing severe functional losses in substrate selection and/or cleavage efficiency. Here, we have investigated the contribution of the less well characterized residue x of the motif (L383 in PS1) to this function. Extensive mutational analysis showed that processing of APP was overall well‐tolerated over a wide range of hydrophobic and hydrophilic mutations. Interestingly, however, most L383 mutants gave rise to reduced levels of Aβ37–39 species, and several increased the pathogenic Aβ42/43 species. Several of the Aβ42/43‐increasing mutants severely impaired the cleavages of Notch1 and CD44 substrates, which were not affected by any other L383 mutation. Our data thus establish an important, but compared with the glycine residues of the motif, overall less critical functional role for L383. We suggest that L383 and the flanking glycine residues form a spatial arrangement in PS1 that is critical for docking and/or cleavage of different γ‐secretase substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号