首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1–42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1–42 aggregation. The compound 3o exhibited best AChE (IC50 = 0.037 μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.  相似文献   

2.
A series of berberine–thiophenyl hybrids were designed, synthesised, and evaluated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and β-amyloid (Aβ) aggregation and as antioxidants. Among these hybrids, compounds 4f and 4i, berberine linked with o-methylthiophenyl and o-chlorothiophenyl by a 2-carbon spacer, were observed to be potent inhibitors of AChE, with IC50 values of 0.077 and 0.042 μM, respectively. Of the tested compounds, 4i was also the most potent inhibitor of BuChE, with an IC50 value of 0.662 μM. Kinetic studies and molecular modelling simulations of the AChE-inhibitor complex indicated that a mixed-competitive binding mode existed for these berberine derivatives. The biological studies also demonstrated that these hybrids displayed interesting activities, including Aβ aggregation inhibition and antioxidant properties.  相似文献   

3.
Two hallmarks of Alzheimer’s disease (AD) observed in the brains of patients with the disease include oxidative injury and deposition of protein aggregates comprised of amyloid-β (Aβ) variants. To inhibit these toxic processes, we synthesized antioxidant-conjugated peptides comprised of Trolox and various C-terminal motifs of Aβ variants, TxAβxn (x = 34, 36, 38, 40; n = 40, 42, 43). Most of these compounds were found to exhibit anti-aggregation activities. Among them, TxAβ36–42 significantly inhibited Aβ1–42 aggregation, showed potent antioxidant activity, and protected SH-SY5Y cells from Aβ1–42-induced cytotoxicity. Thus, this method represents a promising strategy for developing multifunctional AD therapeutic agents.  相似文献   

4.
A series of tacrine-(β-carboline) hybrids (11aq) were designed, synthesized and evaluated as multifunctional cholinesterase inhibitors against Alzheimer’s disease (AD). In vitro studies showed that most of them exhibited significant potency to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (BuChE) and self-induced β-amyloid (Aβ) aggregation, Cu2+-induced Aβ (1–42) aggregation, and to chelate metal ions. Especially, 11l presented the greatest ability to inhibit cholinesterase (IC50, 21.6 nM for eeAChE, 63.2 nM for hAChE and 39.8 nM for BuChE), good inhibition of Aβ aggregation (65.8% at 20 μM) and good antioxidant activity (1.57 trolox equivalents). Kinetic and molecular modeling studies indicated that 11l was a mixed-type inhibitor, binding simultaneously to the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 11l could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood–brain barrier (BBB). These results suggested that 11l might be an excellent multifunctional agent for AD treatment.  相似文献   

5.
Modulation of abnormal amyloid β (Aβ) aggregation is considered to be a potential therapeutic target for Alzheimer’s disease (AD). Recent in vitro and in vivo experiments suggest that inhibition of Aβ aggregation by curcumin would exert favorable effects for preventing or treating AD. We have previously synthesized a series of novel curcumin derivatives. In this study, we investigated the effects of our curcumin derivatives on Aβ aggregation and the cell toxicities of Aβ aggregates. According to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) profiles, 14 of 41 compounds showed a significant increase in the densities of the bands of Aβ (1–42) by incubation during the aggregation process relative to those of Aβ (1–42) prepared in the presence of the vehicle control. Of the 14 compounds, four compounds additionally reduced cell toxicity of the Aβ aggregates by incubation during the aggregation process. A significant positive correlation was observed between the cell viability and densities of the bands at ranges of 15–20, 20–37, 37–75, and 75–200 kDa in SDS-PAGE. On the basis of these results, we propose four curcumin derivatives with potential for preventing AD. These curcumin derivatives exhibited high inhibitory effects on Aβ aggregation and induced the formation of lower molecular size Aβ species that have weaker cell toxicity. These compounds may exert therapeutic effects on AD in future in vivo studies.  相似文献   

6.
In an effort to identify novel multifunctional drug candidates for the treatment of Alzheimer’s disease (AD), a series of hybrid molecules were synthesised by reacting N-(aminoalkyl)tacrine with salicylic aldehyde or derivatives of 2-aminobenzaldehyde. These compounds were then evaluated as multifunctional anti-Alzheimer’s disease agents. All of the hybrids are potential biometal chelators, and in addition, most of them were better antioxidants and inhibitors of cholinesterases and amyloid-β (Aβ) aggregation than the lead compound tacrine. Compound 7c has the potential to be a candidate for AD therapy: it is a much better inhibitor of acetylcholinesterase (AChE) than tacrine (IC50: 0.55 nM vs 109 nM), has good biometal chelation ability, is able to inhibit Aβ aggregation and has moderate antioxidant activity (1.22 Trolox equivalents).  相似文献   

7.
A series of novel 4-anilinoquinazoline derivatives (3a3j) has been synthesized and evaluated as potential inhibitors for protein kinases implicated in Alzheimer’s disease. Among all the synthesized compounds, compound 3e (N-(3,4-dimethoxyphenyl)-6,7-dimethoxyquinazolin-4-amine) exhibited the most potent inhibitory activity against CLK1 and GSK-3α/β kinase with IC50 values of 1.5 μM and 3 μM, respectively. Docking studies were performed to elucidate the binding mode of the compounds to the active site of CLK1 and GSK-3β. The results of our study suggest that compound 3e may serve as a valuable template for the design and development of dual inhibitors of CLK1 and GSK-3α/β enzymes with potential therapeutic application in Alzheimer’s disease.  相似文献   

8.
Alzheimer’s disease (AD) is a multifactorial disorder with several target proteins contributing to its etiology. In search for multifunctional anti-AD drug candidates, taking into account that the acetylcholinesterase (AChE) and beta-amyloid (Aβ) aggregation are particularly important targets for inhibition, the tacrine and benzothiazole (BTA) moieties were conjugated with suitable linkers in a novel series of hybrids. The designed compounds (7a7e) were synthesized and in vitro as well as in ex vivo evaluated for their capacity for the inhibition of acetylcholinesterase (AChE) and Aβ self-induced aggregation, and also for the protection of neuronal cells death (SHSY-5Y cells, AD and MCI cybrids). All the tacrine–BTA hybrids displayed high in vitro activities, namely with IC50 values in the low micromolar to sub-micromolar concentration range towards the inhibition of AChE, and high percentages of inhibition of the self-induced Aβ aggregation. Among them, compound 7a, with the shortest linker, presented the best inhibitory activity of AChE (IC50 = 0.34 μM), while the highest activity as anti-Aβ42 self-aggregation, was evidenced for compound 7b (61.3%, at 50 μM. The docking studies demonstrated that all compounds are able to interact with both catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. Our results show that compounds 7d and 7e improved cell viability in cells treated with Aβ42 peptide. Overall, these multi-targeted hybrid compounds appear as promising lead compounds for the treatment of Alzheimer’s disease.  相似文献   

9.
Alzheimer’s disease (AD) neuropathology is characterized by loss of synapses and neurons, neuritic plaques consisting of β-amyloid (Aβ) peptides, and neurofibrillary tangles consisting of intracellular aggregates of hyperphosphorylated tau protein in susceptible brain regions. Aβ oligomers trigger a cascade of pathogenic events including tau hyperphosphorylation and aggregation, inflammatory reactions, and excitotoxicity that contribute to the progression of AD. The molecular chaperone Hsp90 facilitates the folding of newly synthesized and denatured proteins and is believed to play a role in neurodegenerative disorders in which the defining pathology results in misfolded proteins and the accumulation of protein aggregates. Some agents that inhibit Hsp90 protect neurons against Aβ toxicity and tau aggregation, and assays for rapidly screening potential Hsp90 inhibitors are of interest. We used the release of the soluble cytosolic enzyme lactate dehydrogenase (LDH) as an indicator of the loss of cell membrane integrity and cytotoxicity resulting from exposure to Aβ peptides to evaluate the neuroprotective properties of novel novobiocin analogues and established Hsp90 inhibitors. Compounds were assessed for potency in protecting proliferating and differentiated SH-SY5Y neuronal cells against Aβ-induced cell death; the potential toxicity of each agent alone was also determined. The data indicated that several of the compounds decreased Aβ toxicity even at low nanomolar concentrations and, unexpectedly, were more potent in protecting the undifferentiated cells against Aβ. The novobiocin analogues alone were not toxic even up to 10 μM concentrations whereas GDA and the parent compound, novobiocin, were toxic at 1 and 10 μM, respectively. The results suggest that novobiocin analogues may provide novel leads for the development of neuroprotective drugs.  相似文献   

10.
Glycogen synthase kinase-3β (GSK-3β) is involved in glycogen metabolism, neuronal cell development, osteoblast differentiation. Small molecule inhibitors of GSK-3β have various therapeutic potential for the treatment of diabetes type II, bipolar disorders, stroke and chronic inflammatory disease.To identify GSK-3β inhibitors with novel scaffold from chemical library, we primarily screened out putative inhibitors through computer modeling and subsequently evaluated the inhibitory activity of selected compounds against GSK-3β by in vitro Z’-LYTE? assay. A series of compound KRMs strongly inhibited phosphorylation of its substrate with IC50 value of approximately 0.5 μM. Also, we demonstrated that KRM-189 and KRM-191 competed with ATP for GSK-3β, leading to decreased Vmax and constant Km with increasing concentrations of ATP as determined from Lineweaver–Berk equation. Moreover, they showed the selectivity for GSK-3β over other kinases with IC50 values of 2 to 10 μM or more Incubation of cells with KRM-191 with highly selective and potent inhibitory activity caused accumulation of β-catenin, downstream of GSK-3β signaling pathway, indicating that small molecule can prevent degradation of β-catenin via GSK-3β inhibition. Our results suggest that modeling in combination with in vitro assays can be used for the identification of selective and potent inhibitors.  相似文献   

11.
The SβC gene is conditionally expressed a 99-residue carboxy terminal fragment, C99, of amyloid precursor protein in MC65 cells and causes cell death. Consequently, MC65 cell line was used to identify inhibitors of toxicity related to intracellular amyloid β (Aβ) oligomers. Compounds that reduce the level of Aβ peptides, prevent Aβ aggregation, or eliminate existing Aβ aggregates may be used in the treatment of Alzheimer’s disease (AD). Previously, we found that a tricyclic pyrone (TP) molecule, compound 1, prevents MC65 cell death and inhibits Aβ aggregation. Hence various TPs containing heterocycle at C7 side chain and a nitrogen at position 2 or 5 were synthesized and their MC65 cell protective activities evaluated. TPs containing N3′-adenine moiety such as compounds 1 and 11 are most active with EC50 values of 0.31 and 0.35 μM, respectively. EC50 values of tricyclic N5-analog, pyranoisoquinolinone 13, and N2-analog, pyranopyridinone 20, are 2.49 and 1.25 μM, respectively, despite the lack of adenine moiety. Further investigation of tricyclic N2- and N5-analogs is warranted.  相似文献   

12.
Exploring small-molecule acetylcholinesterase (AChE) inhibitors to slow the breakdown of acetylcholine (Ach) represents the mainstream direction for Alzheimer’s disease (AD) therapy. As the first acetylcholinesterase inhibitor approved for the clinical treatment of AD, tacrine has been widely used as a pharmacophore to design hybrid compounds in order to combine its potent AChE inhibition with other multi-target profiles. In present study, a series of novel tacrine–coumarin hybrids were designed, synthesized and evaluated as potent dual-site AChE inhibitors. Moreover, compound 1g was identified as the most potent candidate with about 2-fold higher potency (Ki = 16.7 nM) against human AChE and about 2-fold lower potency (Ki = 16.1 nM) against BChE than tacrine (Ki = 35.7 nM for AChE, Ki = 8.7 nM for BChE), respectively. In addition, some of the tacrine–coumarin hybrids showed simultaneous inhibitory effects against both Aβ aggregation and β-secretase. We therefore conclude that tacrine–coumarin hybrid is an interesting multifunctional lead for the AD drug discovery.  相似文献   

13.
A novel series of compounds obtained by fusing the acetylcholinesterase (AChE) inhibitor donepezil and the antioxidant melatonin were designed as multi-target-directed ligands for the treatment of Alzheimer’s disease (AD). In vitro assay indicated that most of the target compounds exhibited a significant ability to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (eqBuChE and hBuChE), and β-amyloid (Aβ) aggregation, and to act as potential antioxidants and biometal chelators. Especially, 4u displayed a good inhibition of AChE (IC50 value of 193 nM for eeAChE and 273 nM for hAChE), strong inhibition of BuChE (IC50 value of 73 nM for eqBuChE and 56 nM for hBuChE), moderate inhibition of Aβ aggregation (56.3% at 20 μM) and good antioxidant activity (3.28 trolox equivalent by ORAC assay). Molecular modeling studies in combination with kinetic analysis revealed that 4u was a mixed-type inhibitor, binding simultaneously to catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 4u could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood–brain barrier (BBB). Taken together, these results strongly indicated the hybridization approach is an efficient strategy to identify novel scaffolds with desired bioactivities, and further optimization of 4u may be helpful to develop more potent lead compound for AD treatment.  相似文献   

14.
A series of novel 2-(4-(4-substituted piperazin-1-yl)benzylidene)-1H-indene-1,3(2H)-diones were designed, synthesized and appraised as multifunctional anti-Alzheimer agents. In vitro studies of compounds 2738 showed that these compounds exhibit moderate to excellent AChE, BuChE and Aβ aggregation inhibitory activity. Notably, compounds 34 and 38 appeared as most active multifunctional agents in the entire series and exhibited excellent inhibition against AChE (IC50 = 0.048 μM: 34; 0.036 μM: 38), Aβ aggregation (max% inhibition 82.2%, IC50 = 9.2 μM: 34; max% inhibition 80.9%, IC50 = 10.11 μM: 38) and displayed significant antioxidant potential in ORAC-FL assay. Both compounds also successfully diminished H2O2 induced oxidative stress in SH-SY5Y cells. Fascinatingly, compounds 34 and 38 showed admirable neuroprotective effects against H2O2 and Aβ induced toxicity in SH-SY5Y cells. Additionally, both derivatives showed no considerable toxicity in neuronal cell viability assay and represented drug likeness properties in the primarily pharmacokinetics study. All these results together, propelled out that compounds 34 and 38 might serve as promising multi-functional lead candidates for treatment of AD in the future.  相似文献   

15.
A novel 6-aminopurine scaffold bearing an N9-cis-cyclobutyl moiety was designed using structure-based molecular design based on two known CDK inhibitors, dinaciclib and Cmpd-27. A series of novel 6-aminopurine compounds was prepared for structure–activity relationship (SAR) studies of CDK2 and CDK5 inhibitors. Among the compounds synthesized, compound 8l displayed potent CDK2 and CDK5 inhibitory activities with low nanomolar ranges (IC50 = 2.1 and 4.8 nM, respectively) and showed moderate cytotoxicity in HCT116 colon cancer and MCF7 breast cancer cell lines. Here, we report the synthesis and evaluation of novel 6-aminopurine derivatives and present molecular docking models of compound 81 with CDK2 and CDK5.  相似文献   

16.
In vivo imaging of β-amyloid (Aβ) aggregates consisting of Aβ(1–40) and Aβ(1–42) peptides by positron emission tomography (PET) contributes to the diagnosis and therapy for Alzheimer’s disease (AD). Because 64Cu (t1/2 = 12.7 h) is a radionuclide for PET with a longer physical half-life than 11C (t1/2 = 20 min) and 18F (t1/2 = 110 min), it is an attractive radionuclide for the development of Aβ imaging probes that are suitable for routine use. In the present study, we designed and synthesized two novel 64Cu labeled benzofuran derivatives and evaluated their utility as PET imaging probes for Aβ aggregates. In an in vitro binding assay, 6 and 8 showed binding affinity for Aβ(1–42) aggregates with a Ki value of 33 and 243 nM, respectively. In addition, these probes bound to Aβ plaques deposited in the brain of an AD model mouse in vitro. In a biodistribution experiment using normal mice, these probes showed low brain uptake (0.33% and 0.36% ID/g) at 2 min post-injection. Although refinement to enhance brain uptake is needed, [64Cu]6 and [64Cu]8 demonstrated the feasibility of developing novel PET probes for imaging Aβ aggregates.  相似文献   

17.
A series of 5-(1,3-benzothiazol-6-yl)-4-(4-methyl-1,3-thiazol-2-yl)-1H-imidazole derivatives was synthesized as transforming growth factor-β (TGF-β) type I receptor (also known as activin-like kinase 5 or ALK5) inhibitors. These compounds were evaluated for their ALK5 inhibitory activity in an enzyme assay and for their TGF-β-induced Smad2/3 phosphorylation inhibitory activity in a cell-based assay. As a representative compound, 16i was a potent and selective ALK5 inhibitor, exhibiting a good enzyme inhibitory activity (IC50 = 5.5 nM) as well as inhibitory activity against TGF-β-induced Smad2/3 phosphorylation at a cellular level (IC50 = 36 nM). Furthermore, the topical application of 3% 16i lotion significantly inhibited Smad2 phosphorylation in Mouse skin (90% inhibition compared with vehicle-treated animals).  相似文献   

18.
This article describes discovery of a novel and new class of cholinesterase inhibitors as potential therapeutics for Alzheimer’s disease. A series of novel isoalloxazine derivatives were synthesized and biologically evaluated for their potential inhibitory outcome for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds exhibited high activity against both the enzymes AChE as well as BuChE. Of the synthesized compounds, the most potent isoalloxazine derivatives (7m and 7q) showed IC50 values of 4.72 μM and 5.22 μM respectively against AChE; and, 6.98 μM and 5.29 μM respectively against BuChE. These two compounds were further evaluated for their anti-aggregatory activity for β-amyloid (Aβ) in presence and absence of AChE by performing Thioflavin-T (ThT) assay and Congo red (CR) binding assay. In order to evaluate cytotoxic profile of these two potential compounds, cell viability assay of SH-SY5Y human neuroblastoma cells was performed. Further, to understand the binding behavior of these two compounds with AChE and BuChE enzymes, docking studies have been reported.  相似文献   

19.
Since the imaging of β-amyloid (Aβ) plaques in the brain is believed to be a useful tool for the early diagnosis of Alzheimer’s disease (AD), a number of imaging probes to detect Aβ plaques have been developed. Because the radionuclide 68Ga (t1/2 = 68 min) for PET imaging could become an attractive alternative to 11C and 18F, we designed and synthesized a benzofuran derivative conjugated with a 68Ga complex (68Ga-DOTA-C3-BF) as a novel Aβ imaging probe. In an in vitro binding assay, Ga-DOTA-C3-BF showed high affinity for Aβ(1-42) aggregates (Ki = 10.8 nM). The Ga-DOTA-C3-BF clearly stained Aβ plaques in a section of Tg2576 mouse, reflecting the affinity for Aβ(1-42) aggregates in vitro. In a biodistribution study in normal mice, 68Ga-DOTA-C3-BF displayed low initial uptake (0.45% ID/g) in the brain at 2 min post-injection. While improvement of the brain uptake of 68Ga complexes appears to be essential, these results suggest that novel PET imaging probes that include 68Ga as the radionuclide for PET may be feasible.  相似文献   

20.
A series of novel benzo[b][1,4]oxazin-3(4H)-one derivatives were synthesized as platelet aggregation inhibitors for structure–activity relationships (SAR) analysis. The synthetic pattern, involved Smiles rearrangement for the preparation of benzoxazine, was proven to be more efficient than the conventional methods. Biological evaluation demonstrated that among all the synthesized compounds, compound 9u (IC50 = 9.20 μM) exhibited the most potent inhibition activity compared with aspirin, the positive control (IC50 = 7.07 μM). Molecular docking revealed that these set of compounds could be the GPIIb/IIIa antagonist for that they could be situated in the binding site of GPIIb/IIIa receptor quite well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号