首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Climate change may reduce forest growth and increase forest mortality, which is connected to high carbon costs through reductions in gross primary production and net ecosystem exchange. Yet, the spatiotemporal patterns of vulnerability to both short‐term extreme events and gradual environmental changes are quite uncertain across the species’ limits of tolerance to dryness. Such information is fundamental for defining ecologically relevant upper limits of species tolerance to drought and, hence, to predict the risk of increased forest mortality and shifts in species composition. We investigate here to what extent the impact of short‐ and long‐term environmental changes determines vulnerability to climate change of three evergreen conifers (Scots pine, silver fir, Norway spruce) and two deciduous hardwoods (European beech, sessile oak) tree species at their southernmost limits of distribution in the Mediterranean Basin. Finally, we simulated future forest growth under RCP 2.6 and 8.5 emission scenarios using a multispecies generalized linear mixed model. Our analysis provides four key insights into the patterns of species’ vulnerability to climate change. First, site climatic marginality was significantly linked to the growth trends: increasing growth was related to less climatically limited sites. Second, estimated species‐specific vulnerability did not match their a priori rank in drought tolerance: Scots pine and beech seem to be the most vulnerable species among those studied despite their contrasting physiologies. Third, adaptation to site conditions prevails over species‐specific determinism in forest response to climate change. And fourth, regional differences in forests vulnerability to climate change across the Mediterranean Basin are linked to the influence of summer atmospheric circulation patterns, which are not correctly represented in global climate models. Thus, projections of forest performance should reconsider the traditional classification of tree species in functional types and critically evaluate the fine‐scale limitations of the climate data generated by global climate models.  相似文献   

2.
3.
Hollows, also known as tree cavities, are critical to the survival of many animal species but are too poorly mapped across landscapes to allow for their adequate consideration in regional planning. Managing cost is important, so we tested whether freely available satellite‐derived foliage projective cover and field‐measured stand attributes could be used separately or combined to predict tree hollow abundance in relictual Australian temperate woodlands. Satellite‐derived foliage projective cover revealed variation in woody vegetation densities both within mapped woodland remnants and cleared areas of the agricultural matrix. Plot‐based field assessment of the actual number of hollows in each one‐hectare site (n = 110 sites) revealed a relationship with foliage cover. Improvement of the model was achieved if site‐based estimates of the proportion of the canopy due to Eucalyptus species and the number of mature trees per hectare were included. Remotely sensed foliage cover can improve on traditional vegetation mapping for predicting hollow‐bearing tree and hollow abundances at landscape scales when managing hollow‐dependent fauna habitat across relictual woodlands in temperate Australian agricultural landscapes. At finer scales, the addition of other predictors is necessary to raise the accuracy of the predicted hollow densities.  相似文献   

4.
5.
Most large‐scale multispecies studies of tree growth have been conducted in tropical and cool temperate forests, whereas Mediterranean water‐limited ecosystems have received much less attention. This limits our understanding of how growth of coexisting tree species varies along environmental gradients in these forests, and the implications for species interactions and community assembly under current and future climatic conditions. Here, we quantify the absolute effect and relative importance of climate, tree size and competition as determinants of tree growth patterns in Iberian forests, and explore interspecific differences in the two components of competitive ability (competitive response and effect) along climatic and size gradients. Spatially explicit neighborhood models were developed to predict tree growth for the 15 most abundant Iberian tree species using permanent‐plot data from the Spanish Second and Third National Forest Inventory (IFN). Our neighborhood analyses showed a climatic and size effect on tree growth, but also revealed that competition from neighbors has a comparatively much larger impact on growth in Iberian forests. Moreover, the sensitivity to competition (i.e. competitive response) of target trees varied markedly along climatic gradients causing significant rank reversals in species performance, particularly under xeric conditions. We also found compelling evidence for strong species‐specific competitive effects in these forests. Altogether, these results constitute critical new information which not only furthers our understanding of important theoretical questions about the assembly of Mediterranean forests, but will also be of help in developing new guidelines for adapting forests in this climatic boundary to global change. If we consider the climatic gradients of this study as a surrogate for future climatic conditions, then we should expect absolute growth rates to decrease and sensitivity to competition to increase in most forests of the Iberian Peninsula (in all but the northern Atlantic forests), making these management considerations even more important in the future.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号