首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract Declines in plant species richness with increasing altitude are common, but the form of the relationship can vary, with both monotonic decreasing relationships and humped relationship recorded. However, these different richness to altitude relationships may be due to methods that used different plot sizes/areas and survey efforts. To explore native and exotic plant richness along an altitudinal gradient in the Snowy Mountains of Australia, we consistently surveyed plots that were 120 m2 in area at 39 sites ranging from 540 to 2020 m. To relate exotic plant richness to disturbance, we surveyed plots at 16 sites along main roads and 23 sites along minor roads and also compared these 39 roadside plots to 120‐m2 plots located in undisturbed vegetation adjacent to the roadside (native plant richness was only surveyed in 25 of these 39 adjacent plots). We found a negative linear relationship between total, exotic and native species richness and altitude for plots on the side of main roads (16 sites) and minor roads (23 sites). For adjacent plots negative linear relationships were significant for all measures of species richness except for native species adjacent to major roads. As the pattern occurred for exotics it is less likely to be due to historical constraints on the species pools. The pattern could be influenced by difference in levels of disturbance along the gradient, although any such gradient in disturbance would have to apply to roadside and adjacent plots on major and minor roads. Therefore, it may be due to other factors such as changes in climate along the altitudinal gradient, although additional sampling including direct measures of climatic conditions, soil and disturbance factors would be needed to determine if this was the case.  相似文献   

3.
ABSTRACT

Background: Discrepancies in the shape of the productivity–diversity relationship may arise from differences in spatial scale. We hypothesised that there is a grain size effect on the productivity–diversity relationship.

Aims: To determine the effect of three sampling grain sizes on the productivity–diversity relationship.

Methods: We applied generalised linear mixed effect models on community data from 735 vegetation plots in the Taleghan rangelands, Iran, sampled at three grain sizes (0.25, 1 and 2 m2) to ascertain plant productivity-diversity patterns, while accounting for the effects of site, plant community type, disturbance, and life form.

Results: Overall, relationships between biomass and plant species richness were unimodal at grain sizes of 0.25 and 1 m2, and asymptotical at 2 m2. The spurious occurrence of a single large shrub may overwhelm a small-sized sampling unit, resulting in a high estimate of the sample’s biomass relative to species richness. However, the relationship between biomass and species richness at larger grain sizes is more likely to reach an asymptote.

Conclusions: Shrubs are partly responsible for driving the relationship between plant biomass and species richness. Given that the frequency of shrubs is highly variable between small plots but not so in large plots, their presence may result in unimodal productivity–diversity relationships at small but not at large grain sizes.  相似文献   

4.
The aim of this study was to evaluate the relative contributions of the environment, landscape patterns, and spatial structure to explaining the variation in richness of rare woody species at three levels of rarity (low, medium, and high) and at different grain sizes and spatial extents. We used herbarium records of 195 rare woody species to quantify species richness—overall and for three levels of rarity—of the Yucatan Peninsula, Mexico. We assessed relationships between rare species richness and different sets of explanatory variables (environmental, landscape patterns, and spatial structure of sampling units) using linear regression and variation partitioning analyses at three grain sizes (625, 400, and 225 km2). We also conducted a principle coordinates of neighbor matrices analysis to allow interpretation of the results in terms of different spatial extents. The percentage of variation in rare species richness explained by the models was highest for the largest grain size and spatial extent. At the larger extents, rare species richness was explained mainly by the environment, whereas landscape patterns played a more prominent role at the local extent. Landscape patterns also contributed more to explaining species richness at low to medium levels of rarity, whereas the richness of extremely rare species was better explained by spatial structure. We conclude that the relative contribution of the factors explaining the variation of rare species richness depends on both grain and extent, as well as on the level of rarity. These results underscore the importance of considering the different components of scale (grain and extent) as well as different levels of species rarity in order to better understand the patterns of distribution of rare species richness and to be able to frame appropriate conservation strategies.  相似文献   

5.
Several different hypotheses account for the success of introduced species in new environments. Experimental studies show a negative native-exotic richness relationship (NERR), while observational studies suggest that this relationship is usually positive. Increased resource availability and environmental variation can also enable introduced species to establish in new environments. We conducted an observational study in a semi-arid grassland in the Thompson-Nicola District of British Columbia to examine the biotic and abiotic factors that account for variation in introduced and native species richness.In each of 12 sites, an 8 × 8 m area was set up, containing 64, 1-m2 plots. We identified and categorized plant species in each site into introduced and native species. We tested the relationship between introduced species richness and native species richness at the 1-m2 sampling grain and at sampling grains up to 64 m2. We also analysed the relationship between native and introduced species, and within-plot biomass, and between native and introduced species and variation in biomass. For a representative subset of four sites, we tested the relationship between introduced and native species richness and nitrogen, phosphorus and potassium.We found no NERR at the 1 m2 sampling grain, nor for the other sampling grains up to 64 m2. Introduced species richness increased with phosphorus and nitrogen availability, and was also positively related to biomass heterogeneity.Our results indicate that introduced species richness in these grasslands is likely influenced by phosphorus and nitrogen, and by variation in vegetation biomass, but not by native species. More non-native plants are likely to occupy nutrient-rich plots compared to nutrient-poor plots in these grasslands. Variation in biomass can leave gaps for the establishment of introduced species. These results should inform management considerations for the control of invasive species to optimize preservation of grasslands.  相似文献   

6.
Many systems are prone to both exotic plant invasion and frequent natural disturbances. Native species richness can buffer the effects of invasion or disturbance when imposed in isolation, but it is largely unknown whether richness provides substantial resistance against invader impact in the face of disturbance. We experimentally examined how disturbance (drought/burning) influenced the impact of three exotic invaders (Centaurea stoebe, Linaria dalmatica, or Potentilla recta) on native abundance across a gradient of species richness, using previously constructed grassland assemblages. We found that invaders had higher cover in experimentally disturbed plots than in undisturbed plots across all levels of native species richness. Although exotic species varied in cover, all three invaders had significant impacts on native cover in disturbed plots. Regardless of disturbance, however, invader cover diminished with increasing richness. Invader impacts on native cover also diminished at higher richness levels, but only in undisturbed plots. In disturbed plots, invaders strongly impacted native cover across all richness levels, as disturbance favoured invaders over native species. By examining these ecological processes concurrently, we found that disturbance exacerbated invader impacts on native abundance. Although diversity provided a buffering effect against invader impact without disturbance, the combination of invasion and disturbance markedly depressed native abundance, even in high richness assemblages.  相似文献   

7.
Stohlgren  Thomas J.  Bull  Kelly A.  Otsuki  Yuka  Villa  Cynthia A.  Lee  Michelle 《Plant Ecology》1998,138(1):113-125
In the Central Grasslands of the United States, we hypothesized that riparian zones high in soil fertility would contain more exotic plant species than upland areas of low soil fertility. Our alternate hypothesis was that riparian zones high in native plant species richness and cover would monopolize available resources and resist invasion by exotic species. We gathered nested-scale vegetation data from 40 1 m2subplots (nested in four 1000 m2 plots) in both riparian and upland sites at four study areas in Colorado, Wyoming, and South Dakota (a total of 320 1 m2 subplots and 32 1000 m2 plots). At the 1 m2 scale, mean foliar cover of native species was significantly greater (P<0.001) in riparian zones (36.3% ± 1.7%) compared to upland sites (28.7% ± 1.5%), but at this small scale there were no consistent patterns of native and exotic species richness among the four management areas. Mean exotic species cover was slightly higher in upland sites compared to riparian sites (9.0% ± 3.8% versus 8.2% ± 3.0% cover). However, mean exotic species richness and cover were greater in the riparian zones than upland sites in three of four management areas. At the 1000 m2 scale, mean exotic species richness was also significantly greater (P<0.05) in riparian zones (7.8 ± 1.0 species) compared to upland sites (4.8 ± 1.0 species) despite the heavy invasion of one upland site. For all 32 plots combined, 21% of the variance in exotic species richness was explained by positive relationships with soil % silt (t =1.7, P=0.09) and total foliar cover (t = 2.4, P=0.02). Likewise, 26% of the variance in exotic species cover (log10 cover) was explained by positive relationships with soil % silt (t =2.3, P=0.03) and total plant species richness (t = 2.5, P=0.02). At landscape scales (four 1000 m2 plots per type combined), total foliar cover was significantly and positively correlated with exotic species richness (r=0.73, P<0.05) and cover (r=0.74, P<0.05). Exotic species cover (log10 cover) was positively correlated with log10% N in the soil (r=0.61, P=0.11) at landscape scales. On average, we found that 85% (±5%) of the total number of exotic species in the sampling plots of a given management area could be found in riparian zones, while only 50% (±8%) were found in upland plots. We conclude that: (1) species-rich and productive riparian zones are particularly invasible in grassland ecosystems; and (2) riparian zones may act as havens, corridors, and sources of exotic plant invasions for upland sites and pose a significant challenge to land managers and conservation biologists.  相似文献   

8.
Background and AimsThere is a paucity of empirical research and a lack of predictive models concerning the interplay between spatial scale and disturbance as they affect the structure and assembly of plant communities. We proposed and tested a trait dispersion-based conceptual model hypothesizing that disturbance reinforces assembly processes differentially across spatial scales. Disturbance would reinforce functional divergence at the small scale (neighbourhood), would not affect functional dispersion at the intermediate scale (patch) and would reinforce functional convergence at the large scale (site). We also evaluated functional and species richness of native and exotic plants to infer underlying processes. Native and exotic species richness were expected to increase and decrease with disturbance, respectively, at the neighbourhood scale, and to show similar associations with disturbance at the patch (concave) and site (negative) scales.MethodsIn an arid shrubland, we estimated species richness and functional dispersion and richness within 1 m2 quadrats (neighbourhood) nested within 100 m2 plots (patch) along a small-scale natural disturbance gradient caused by an endemic fossorial rodent. Data for the site scale (2500 m2 plots) were taken from a previous study. We also tested the conceptual model through a quantitative literature review and a meta-analysis.Key ResultsAs spatial scale increased, disturbance sequentially promoted functional divergence, random trait dispersion and functional convergence. Functional richness was unaffected by disturbance across spatial scales. Disturbance favoured natives over exotics at the neighbourhood scale, while both decreased under high disturbance at the patch and site scales.ConclusionsThe results supported the hypothesis that disturbance reinforces assembly processes differentially across scales and hampers plant invasion. The quantitative literature review and the meta-analysis supported most of the model predictions.  相似文献   

9.
Land managers require landscape-scale information on where exotic plant species have successfully established, to better guide research, control, and restoration efforts. We evaluated the vulnerability of various habitats to invasion by exotic plant species in a 100,000 ha area in the southeast corner of Grand Staircase-Escalante National Monument, Utah. For the 97 0.1-ha plots in 11 vegetation types, exotic species richness (log10) was strongly negatively correlated to the cover of cryptobiotic soil crusts (r = −0.47, P < 0.001), and positively correlated to native species richness (r = 0.22, P < 0.03), native species cover (r = 0.23, P < 0.05), and total nitrogen in the soil (r = 0.40, P < 0.001). Exotic species cover was strongly positively correlated to exotic species richness (r = 0.68, P < 0.001). Only 6 of 97 plots did not contain at least one exotic species. Exotic species richness was particularly high in locally rare, mesic vegetation types and nitrogen rich soils. Dry, upland plots (n = 51) had less than half of the exotic species richness and cover compared to plots (n = 45) in washes and lowland depressions that collect water intermittently. Plots dominated by trees had significantly greater native and exotic species richness compared to plots dominated by shrubs. For the 97 plots combined, 33% of the variance in exotic species richness could be explained by a positive relationship with total plant cover, and negative relationships with the cover of cryptobiotic crusts and bare ground. There are several reasons for concern: (1) Exotic plant species are invading hot spots of native plant diversity and rare/unique habitats. (2) The foliar cover of exotic species was greatest in habitats that had been invaded by several exotic species.(3) Continued disturbance of fragile cryptobiotic crusts by livestock, people, and vehicles may facilitate the further invasion of exotic plant species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Pocket gopher (Geomyidae) disturbances are created in spatiallypredictable patterns. This may influence resource heterogeneity and affectgrassland vegetation in a unique manner. We attempt to determine the extent towhich density and spatial pattern of soil disturbances influence tallgrassprairie plant community structure and determine how these disturbances interactwith fire. To investigate the effects of explicit disturbance patterns we createdsimulated pocket gopher burrows and mounds in various spatial patterns.Simulated burrows were drilled into the soil at different densities inreplicated plots of burned and unburned prairie. Separate plots of simulatedmounds were created in burned and unburned prairie at low, medium, or high mounddensities in clumped, uniform, or random spatial dispersions. In both burned and unburned plots, increased burrow density decreasedgraminoid biomass and increased forb biomass. Total-plant and graminoid biomasswere higher in burned than unburned plots while forb biomass was higher inunburned plots. Total-plant species richness was not significantly affected byburrow density or burning treatments, but graminoid species richness increasedin unburned plots and forb species richness increased in burned plots. Plant species richness was temporarily reduced directly on mounddisturbances compared to undisturbed prairie. Over time and at larger samplingscales, the interaction of fire and mound disturbance patterns significantlyaffected total-plant and graminoid species richness. The principal effect inburned and unburned prairie was decreased total-plant and graminoid speciesrichness with increased mound disturbance intensity. Although species richness at small patch scales was not increased by anyintensity of disturbance and species composition was not altered by theestablishment of a unique guild of disturbance colonizing plants, our studyrevealed that interactions between soil disturbances and fire alter the plantcommunity dominance structure of North American tallgrass prairie primarily viachanges to graminoids. Moreover, these effects become increasingly pronouncedover time and at larger spatial sampling scales.  相似文献   

11.
Broad‐scale threats to floristic diversity in native temperate grasslands are well‐documented and include elevated soil nutrients, changes in disturbance regimes and exotic species. However, fine‐scale variables associated with the presence of native forbs, such as gap size and biomass cover, have received relatively little attention. We conducted a case–control study to determine the relative influence of physical structural dimensions and other fine‐scale variables associated with the presence of native forbs in a modified temperate grassland previously used for domestic grazing. We matched 145 case plots centred on 27 different species of native forbs with 290 control plots not centred on a native forb. For each percentage increase in ground litter cover, dead biomass cover, grass cover or exotic forb cover, or the area of bare ground within 30 cm, the relative odds that a native forb was present vs absent declined by a mean of 10–13%. Living and dead biomass reduces light availability, and the former can also reduce nutrient and water availability. Declines in the presence of native forbs associated with increasing total bare ground may suggest that gap sizes were too small or the soil surface condition too degraded. Our results add to a body of evidence suggesting that native forbs in temperate native grassland are likely to benefit from periodic removal of living and dead grass biomass and a reduction in the cover of exotic forbs.  相似文献   

12.
Aim At macroecological scales, exotic species richness is frequently positively correlated with human population density. Such patterns are typically thought to arise because high human densities are associated with increased introduction effort and/or habitat modification and disturbance. Exotic and native species richness are also frequently positively correlated, although the causal mechanisms remain unclear. Energy availability frequently explains much of the variation in species richness and we test whether such species–energy relationships may influence the relationships of exotic species richness with human population density and native species richness. Location Great Britain. Methods We first investigate how spatial variation in the distributions of the 10 exotic bird species is related to energy availability. We then model exotic species richness using native avian species richness, human population density and energy availability as predictors. Species richness is modelled using two sets of models: one assumes independent errors and the other takes spatial correlation into account. Results The probability of each exotic species occurring, in a 10‐km quadrat, increases with energy availability. Exotic species richness is positively correlated with energy availability, human population density and native species richness in univariate tests. When taking energy availability into account, exotic species richness is negligibly influenced by human population density, but remains positively associated with native species richness. Main conclusions We provide one of the few demonstrations that energy availability exerts a strong positive influence on exotic species richness. Within our data, the positive relationship between exotic species richness and human population density probably arises because both variables increase with energy availability, and may be independent of the influence of human density on the probability of establishment. Positive correlations between exotic and native species richness remain when controlling for the influence of energy on species richness. The relevance of such a finding to the debate on the relationship between diversity and invasibility is discussed.  相似文献   

13.
Patrick L. Lilley  Mark Vellend 《Oikos》2009,118(9):1373-1382
Recent research has proposed a scale-dependence to relationships between native diversity and exotic invasions. At fine spatial scales, native–exotic richness relationships should be negative as higher native richness confers resistance to invasion. At broad scales, relationships should be positive if natives and exotics respond similarly to extrinsic factors. Yet few studies have examined both native and exotic richness patterns across gradients of human influence, where impacts could affect native and exotic species differently. We examined native–exotic richness relationships and extrinsic drivers of plant species richness and distributions across an urban development gradient in remnant oak savanna patches. In sharp contrast to most reported results, we found a negative relationship at the regional scale, and no relationship at the local scale. The negative regional-scale relationship was best explained by extrinsic factors, surrounding road density and climate, affecting natives and exotics in opposite ways, rather than a direct effect of native on exotic richness, or vice versa. Models of individual species distributions also support the result that road density and climate have largely opposite effects on native and exotic species, although simple life history traits (life form, dispersal mode) do not predict which habitat characteristics are important for particular species. Roads likely influence distributions and species richness by increasing both exotic propagule pressure and disturbance to native species. Climate may partially explain the negative relationship due to differing climatic preferences within the native and exotic species pools. As gradients of human influence are increasingly common, negative broad-scale native–exotic richness relationships may be frequent in such landscapes.  相似文献   

14.
Relationships between the diversity and abundance of native versus exotic species underpin management of disturbance regimes for conservation. Theory predicts negative, positive or neutral relationships depending on respective drivers, with greatest potential benefit when natives and exotics show opposing responses to management. We examined drivers of exotic plant cover and relationships with native plant richness using 12-year burning, mowing and grazing experiments in two representative temperate grassy eucalypt woodlands with contrasting histories of frequent versus infrequent disturbance. We hypothesized that disturbance and high resources favour exotics, and assessed whether natives and exotics covary positively due to common external drivers or negatively due to contrasting external drivers and/or competition. Positive relationships with rainfall and disturbance explained >80 % of the variation in exotic cover at both sites, supporting our first hypothesis. Native–exotic relationships were non-linear, with native richness first increasing rapidly with increasing exotic cover, then levelling and beginning to decrease. Common external drivers, particularly inter-annual rainfall, explained initial positive relationships, highlighting a prevalence of positive relationships at long temporal (as well as large spatial) scales. At the historically frequently-burnt site, a concomitant increase in native richness and exotic cover after fire contributed to the positive relationship, indicating a management trade-off. At the long-unburnt site, exotics increased but natives decreased with fire, suggesting dual benefits of low fire frequency. We conclude that relationships between exotic cover and native richness emerge from interactions among external drivers and competitive responses, with responses to external drivers dominating at low resources and negative interactions gaining importance as resources increase.  相似文献   

15.
The degree to which plant communities are vulnerable to invasion by alien species has often been assessed using the relationship between native and alien plant species richness (NAR). Variation in the direction and strength of the NAR tends to be negative for small plot sizes and study extents, but positive for large plots and extents. This invasion paradox has been attributed to different processes driving species richness at different spatial scales. However, the focus on plot size has drawn attention away from other factors influencing the NAR, in part because the influence of other factors may be obscured by or interact with plot size. Here, we test whether variation in the NAR can be explained by covariates linked to community susceptibility to invasion and whether these interact with plot size using a quantitative meta‐analysis drawn from 87 field studies that examined 161 NARs. While plot size explained most variation, the NAR was less positive in grassland habitats and in the Australasian region. Other covariates did not show strong relationships with the NAR even after accounting for interactions with plot size. Instead, much of the unexplained variation is associated with article or author specific differences, suggesting the NAR depends strongly on how different authors choose their study system or study design.  相似文献   

16.
Isbell FI  Wilsey BJ 《Oecologia》2011,165(3):771-781
Species-rich native grasslands are frequently converted to species-poor exotic grasslands or pastures; however, the consequences of these changes for ecosystem functioning remain unclear. Cattle grazing (ungrazed or intensely grazed once), plant species origin (native or exotic), and species richness (4-species mixture or monoculture) treatments were fully crossed and randomly assigned to plots of grassland plants. We tested whether (1) native and exotic plots exhibited different responses to grazing for six ecosystem functions (i.e., aboveground productivity, light interception, fine root biomass, tracer nitrogen uptake, biomass consumption, and aboveground biomass recovery), and (2) biodiversity-ecosystem functioning relationships depended on grazing or species origin. We found that native and exotic species exhibited different responses to grazing for three of the ecosystem functions we considered. Intense grazing decreased fine root biomass by 53% in exotic plots, but had no effect on fine root biomass in native plots. The proportion of standing biomass consumed by cattle was 16% less in exotic than in native grazed plots. Aboveground biomass recovery was 30% less in native than in exotic plots. Intense grazing decreased aboveground productivity by 25%, light interception by 14%, and tracer nitrogen uptake by 54%, and these effects were similar in native and exotic plots. Increasing species richness from one to four species increased aboveground productivity by 42%, and light interception by 44%, in both ungrazed and intensely grazed native plots. In contrast, increasing species richness did not influence biomass production or resource uptake in ungrazed or intensely grazed exotic plots. These results suggest that converting native grasslands to exotic grasslands or pastures changes ecosystem structure and processes, and the relationship between biodiversity and ecosystem functioning.  相似文献   

17.
We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 × 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike’s Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions.  相似文献   

18.
Aim Classic theory suggests that species‐rich communities should be more resistant to the establishment of exotic species than species‐poor communities. Although this theory predicts that exotic species should be less diverse in regions that contain more native species, macroecological analyses often find that the correlation between exotic and native species richness is positive rather than negative. To reconcile results with theory, we explore to what extent climatic conditions, landscape heterogeneity and anthropogenic disturbance may explain the positive relationship between native and exotic plant richness. Location Catalonia (western Mediterranean region). Methods We integrated floristic records and GIS‐based environmental measures to make spatially explicit 10‐km grid cells. We asked whether the observed positive relationship between native and exotic plant richness (R2= 0.11) resulted from the addition of several negative correlations corresponding to different environmental conditions identified with cluster analysis. Moreover, we directly quantified the importance of common causal effects with a structural equation modelling framework. Results We found no evidence that the relationship between native and exotic plant richness was negative when the comparison was made within environmentally homogeneous groups. Although there were common factors explaining both native and exotic richness, mainly associated with landscape heterogeneity and human pressure, these factors only explained 17.2% of the total correlation. Nevertheless, when the comparison was restricted to native plants associated with human‐disturbed (i.e. ruderal) ecosystems, the relationship was stronger (R2= 0.52) and the fraction explained by common factors increased substantially (58.3%). Main conclusions While our results confirm that the positive correlation between exotic and native plant richness is in part explained by common extrinsic factors, they also highlight the great importance of anthropic factors that – by reducing biotic resistance – facilitate the establishment and spread of both exotic and native plants that tolerate disturbed environments.  相似文献   

19.
Aim To examine native‐exotic species richness relationships across spatial scales and corresponding biotic homogenization in wetland plant communities. Location Illinois, USA. Methods We analysed the native‐exotic species richness relationship for vascular plants at three spatial scales (small, 0.25 m2 of sample area; medium, 1 m2 of sample area; large, 5 m2 of sample area) in 103 wetlands across Illinois. At each scale, Spearman’s correlation coefficient between native and exotic richness was calculated. We also investigated the potential for biotic homogenization by comparing all species surveyed in a wetland community (from the large sample area) with the species composition in all other wetlands using paired comparisons of their Jaccard’s and Simpson’s similarity indices. Results At large and medium scales, native richness was positively correlated with exotic richness, with the strength of the correlation decreasing from the large to the medium scale; at the smallest scale, the native‐exotic richness correlation was negative. The average value for homogenization indices was 0.096 and 0.168, using Jaccard’s and Simpson’s indices, respectively, indicating that these wetland plant communities have been homogenized because of invasion by exotic species. Main Conclusions Our study demonstrated a clear shift from a positive to a negative native‐exotic species richness relationship from larger to smaller spatial scales. The negative native‐exotic richness relationship that we found is suggested to result from direct biotic interactions (competitive exclusion) between native and exotic species, whereas positive correlations likely reflect the more prominent influence of habitat heterogeneity on richness at larger scales. Our finding of homogenization at the community level extends conclusions from previous studies having found this pattern at much larger spatial scales. Furthermore, these results suggest that even while exhibiting a positive native‐exotic richness relationship, community level biotas can/are still being homogenized because of exotic species invasion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号