首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel 6H-[1]benzothiopyrano[4,3-b]quinoline derivatives were prepared and evaluated for their anti-hepatitis B virus (HBV) activity and cytotoxicity in human hepatoblastoma-derived liver Hep-G2 cells. Compounds 10g, 10h, 10j, 10l and 10o were found to be potent anti-HBV compounds with IC50 values less than 50 μM. The most promising compound was 10l, with an IC50 value of 14.7 μM and a SI value of 12.4. This is the first report of the anti-HBV effects of 6H-[1]benzothiopyrano[4,3-b] quinolin-9-ols.  相似文献   

2.
Certain iminonaphtho[2,3-b]furan derivatives were synthesized from their respective carbonyl precursors in the regiospecific and the stereospecific manners. These compounds were evaluated for their antiproliferative effects against four human carcinoma cells (MCF7, NCI-H460, SF-268, and K562) and the normal fibroblast cell line (Detroit 551). Among them, (Z)-4-(hydroxyimino)naphtho[2,3-b]furan-9(4H)-one (8) and (Z)-4-methoxy-iminonaphtho[2,3-b]furan-9(4H)-one (9) exhibited GI50 values of 0.82 and 0.60 μM, respectively, against the growth of K562 cells and were inactive against the normal fibroblast Detroit 551. The selectivity index (SI) on K562 cell for 8 and 9 was >121.95 and >166.67, respectively, which is comparable to daunorubicin (SI = 239) and is more favorable than camptothecin (SI = 16.5). The cell cycle analysis on K562 indicated that these compounds arrest the cell cycle at the G2/M phase. The morphological assessment and DNA fragmentation analysis indicated that 9-induced cell apoptosis in K562 cells. The apoptotic induction may through caspase-3 activity and cleavage of PARP.  相似文献   

3.
As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3ad, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50’s in 1.79–4.35 μM range; COX-2 selectivity index (SI) = 6.8–16.7 range). Compound 3b emerged as most potent (COX-2 IC50 = 1.79 μM; COX-1 IC50 >30 μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5 h) in comparison to celecoxib (51.44% inhibition of edema at 5 h) in carrageenan-induced rat paw edema assay. Structure–activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1.  相似文献   

4.
A set of 5,6-fused bicyclic heteroaromatic scaffolds were investigated for their in vitro anti-tubercular activity versus replicating and non-replicating strains of Mycobacterium tuberculosis (Mtb) in an attempt to find an alternative scaffold to the imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidines that were previously shown to have potent activity against replicating and drug resistant Mtb. The five new bicyclic heteroaromatic scaffolds explored in this study include a 2,6-dimethylimidazo[1,2-b]pyridazine-3-carboxamide (7), a 2,6-dimethyl-1H-indole-3-carboxamide (8), a 6-methyl-1H-indazole-3-carboxamide (9), a 7-methyl-[1,2,4]triazolo[4,3-a]pyridine-3-carboxamide (10), and a 5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-2-carboxamide (11). Additionally, imidazo[1,2-a]pyridines isomers (2 and 12) and a homologous imidazo[1,2-a]pyrimidine isomer (6) were prepared and compared. Compounds 2 and 6 were found to be the most potent against H37Rv Mtb (MIC’s of 0.1 μM and 1.3 μM) and were inactive (MIC >128 μM) against Staphylococcus aureus, Escherichia coli and Candida albicans. Against other non-tubercular mycobacteria strains, compounds 2 and 6 had activity against Mycobacterium avium (16 and 122 μM, respectively), Mycobacterium kansasii (4 and 19 μM, respectively), Mycobacterium bovis BCG (1 and 8 μM, respectively) while all the other scaffolds were inactive (>128 μM).  相似文献   

5.
A new convenient method for preparation of 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives 5bg and coumarin containing hydrazide-hydrazone analogues 4ae was presented. The antimycobacterial activity against reference strain Mycobacterium tuberculosis H37Rv and cytotoxicity against the human embryonic kidney cell line HEK-293 were tested in vitro. All compounds demonstrated significant minimum inhibitory concentrations (MIC) ranging 0.28–1.69 μM, which were comparable to those of isoniazid. The cytotoxicity (IC50 > 200 µM) to the “normal cell” model HEK-293T exhibited by 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives 5be, was noticeably milder compared to that of their hydrazone analogues 4ae (IC50 33–403 µM). Molecular docking studies on compounds 4ae and 5bg were also carried out to investigate their binding to the 2-trans-enoyl-ACP reductase (InhA) enzyme involved in M. tuberculosis cell wall biogenesis. The binding model suggested one or more hydrogen bonding and/or arene-H or arene-arene interactions between hydrazones or pyrazole-fused coumarin derivatives and InhA enzyme for all synthesized compounds.  相似文献   

6.
mPGES-1 is inducible terminal synthase acting downstream of COX enzymes in arachidonic acid pathway, regulates the biosynthesis of pro-inflammatory prostaglandin PGE2. Cardiovascular side effect of coxibs and NSAIDs, selective for COX-2 inhibition, stimulated interest in mPGES-1, a therapeutic target with potential to deliver safe and effective anti-inflammatory drugs. The synthesis and structure activity relationship of a series of compounds from 2-aryl substituted quinazolin-4(3H)-one, pyrido[4,3-d]pyrimidin-4(3H)-one and pyrido[2,3-d]pyrimidin-4(3H)-one scaffolds as mPGES-1 inhibitor are discussed. A set of analogs (28, 48, 49) were identified with <10 nM potencies in the recombinant human mPGES-1 enzyme and in the A549 cellular assays. These analogs were also found to be potent in the human whole blood assay (<400 nM). Furthermore, the representative compound 48 was shown to be selective with other prostanoid synthases and was able to effectively regulate PGE2 biosynthesis in clinically relevant inflammatory settings, in comparison with celecoxib.  相似文献   

7.
Four series of [1,2,4]triazolo[3,4-a]phthalazine and tetrazolo[5,1-a]phthalazine derivatives bearing substituted piperazine moieties were synthesized and evaluated for their positive inotropic activity by measuring the left atrium stroke volume in isolated rabbit-heart preparations. Several compounds were developed and showed favorable activities compared to the standard drug milrinone, with (4-([1,2,4]triazolo[3,4-a]phthalazin-6-yl)piperazin-1-yl)(p-tolyl)methanone (5g) being identified as the most potent with an increased stroke volume of 19.15 ± 0.22% (milrinone: 2.46 ± 0.07%) at a concentration of 3 × 10–5 M. A preliminary study of mechanism of action revealed that 5g displayed its positive inotropic effect may be related to the PDE-cAMP-PKA signaling pathway. Compounds exhibiting inotropic effects were also evaluated in terms of the chronotropic effects.  相似文献   

8.
Multitarget approaches, i.e., addressing two or more targets simultaneously with a therapeutic agent, are hypothesized to offer additive therapeutic benefit for the treatment of neurodegenerative diseases. Validated targets for the treatment of Parkinson’s disease are, among others, the A2A adenosine receptor (AR) and the enzyme monoamine oxidase B (MAO-B). Additional blockade of brain A1 ARs may also be beneficial. We recently described 8-benzyl-substituted tetrahydropyrazino[2,1-f]purinediones as a new lead structure for the development of such multi-target drugs. We have now designed a new series of tetrahydropyrazino[2,1-f]purinediones to extensively explore their structure–activity-relationships. Several compounds blocked human and rat A1 and A2AARs at similar concentrations representing dual A1/A2A antagonists with high selectivity versus the other AR subtypes. Among the best dual A1/A2AAR antagonists were 8-(3-(4-chlorophenyl)propyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (41, Ki human A1: 65.5 nM, A2A: 230 nM; Ki rat A1: 352 nM, A2A: 316 nM) and 1,3-dimethyl-8-((2-(thiophen-2-yl)thiazol-4-yl)methyl)-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (57, Ki human A1: 642 nM, A2A: 203 nM; Ki rat A1: 166 nM, A2A: 121 nM). Compound 57 was found to be well water-soluble (0.7 mg/mL) at a physiological pH value of 7.4. One of the new compounds showed triple-target inhibition: (R)-1,3-dimethyl-8-(2,1,3,4-tetrahydronaphthalen-1-yl)-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (49) was about equipotent at A1 and A2AARs and at MAO-B (Ki human A1: 393 nM, human A2A: 595 nM, IC50 human MAO-B: 210 nM) thus allowing future in vivo explorations of the intended multi-target approach.  相似文献   

9.
A series of 1-substituted-N-(4,5-dihydro-1-methyl-[1,2,4]triazolo[4,3-a]quinolin-7-yl) piperidine-4-carboxamides has been synthesized and evaluated for positive inotropic activity by measuring left atrium stroke volume in isolated rabbit-heart preparations. Some of these derivatives exhibited favorable activity compared with the standard drug, milrinone, among which 1-(2-fluorobenzyl)-N-(4,5-dihydro-1-methyl-[1,2,4]triazolo[4,3-a]quinolin-7-yl)piperidine-4-carboxamide 6a was the most potent, increasing stroke volume by 11.92 ± 0.35% (milrinone: 6.36 ± 0.13%) at 1 × 10?4 M.  相似文献   

10.
Syntheses, biological evaluation, and structure–activity relationships for a series of novel 5-styryl and 5-phenethyl analogs of dimebolin are disclosed. The novel derivatives and dimebolin share a broad spectrum of activities against therapeutically relevant targets. Among all synthesized derivatives, 2,8-dimethyl-5-[(Z)-2-phenylvinyl]-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole and its 5-phenethyl analog are the most potent blockers of 5-HT7, 5-HT6, 5-HT2C, Adrenergic α2 and H1 receptors. The general affinity rank order towards the studied receptors was Z-3(2) > 4(2) ? 4(3) ? dimebolin, all of them having highest affinities to 5-HT7 receptors.  相似文献   

11.
The present report describes the synthesis and antiproliferative evaluation of certain indolo[3,2-c]quinoline derivatives. For the C6 anilino-substituted derivatives, (11H-indolo[3,2-c]quinolin-6-yl)phenylamine (6a) was inactive. Structural optimization of 6a by the introduction of a hydroxyl group at the anilino-moiety resulted in the enhancement of antiproliferative activity in which the activity decreased in an order of para-OH, 7a > meta-OH, 8a > ortho-OH, 9a. For the C6 alkylamino-substituted derivatives, 11a, 12a, 13a, 14a, and 15a exhibited comparable antiproliferative activities against all cancer cells tested and the skin Detroit 551 normal fibroblast cells. Three cancer cells, HeLa, A549, and SKHep, are very susceptible with IC50 of less than 2.17 μM while PC-3 is relatively resistant to this group of indolo[3,2-c]quinolines. For the 2-phenylethylamino derivatives, compound 20a is active against the growth of HeLa with an IC50 of 0.52 μM, but is less effective against the growth of Detroit 551 with an IC50 of 19.32 μM. For the bis-indolo[3,2-c]quinolines, N,N-bis-[3-(11H-indolo[3,2-c]quinolin-6-yl)aminopropyl]amine hydrochloride (25) is more active than its N-methyl derivative 26 and the positive Doxorubicin. Mechanism studies indicated 25 can induce caspase-3 activation, γ-H2AX phosphorylation, cleavage of poly(ADP-ribose)polymerase and DNA fragmentation. These results provide evidence that DNA, topo I, and topo II are the primary targets of indolo[3,2-c]quinoline derivatives and that consequently inhibits proliferation and causes apoptosis in cancer cells.  相似文献   

12.
We describe herein the design, synthesis and pharmacological evaluation of novel 3-arylamine-imidazo[1,2-a]pyridine derivatives structurally designed as novel symbiotic prototypes presenting analgesic and anti-inflammatory properties. The derivatives obtained were submitted to in vivo assays of nociception, hyperalgesia and inflammation, and to in vitro assays of human PGHS-2 inhibition. These assays allowed the identification of compound LASSBio-1135 (3a) as an anti-inflammatory and analgesic symbiotic prototype. This compound inhibited moderately the human PGHS-2 enzyme activity (IC50 = 18.5 μM) and reverted the capsaicin-induced thermal hyperalgesia (100 μmol/kg, po) similarly to p38 MAPK inhibitor SB-203580 (2). Additionally, LASSBio-1135 (3a) presented activity similar to celecoxib (1) regarding the reduction of the carrageenan-induced rat paw edema (33% of inhibition at 100 μmol/kg, po). We also discovered derivatives LASSBio-1140 (3c) and LASSBio-1141 (3e) as analgesic and anti-inflammatory prototypes, which were able to attenuate the capsaicin-induced thermal hyperalgesia (100 μmol/kg, po) and reduce the carrageenan-induced paw edema (ED50 = 11.5 μmol/kg (3.3 mg/kg) and 14.5 μmol/kg (4.1 mg/kg), respectively), being both more active than celecoxib (1), despite the fact that their effects involve a different mechanism of action. Additionally, derivative LASSBio-1145 (3j) showed remarkable analgesic (ED50 = 22.7 μmol/kg (8.9 mg/kg)) and anti-inflammatory (ED50 = 8.7 μmol/kg (3.4 mg/kg)) profile in vivo (100 μmol/kg; po), in AcOH-induced abdominal constrictions in mice and carrageenan-induced rat paw edema models, respectively, being a novel orally-active anti-inflammatory drug candidate that acts as a selective PGHS-2 inhibitor (IC50 = 2.8 μM).  相似文献   

13.
Herein we report the identification of (+)-N-(2-((1H-pyrazol-1-yl)methyl)-3-((1R,3r,5S)-6′-fluoro-8-azaspiro[bicyclo[3.2.1]octane-3,1′-isochroman]-8-yl)propyl)-N-[3H]-methylacetamide {[3H]PF-7191 [(+)-11]} as a promising radiotracer for the nociceptin opioid peptide (NOP) receptor. (+)-11 demonstrated high NOP binding affinity (Ki = 0.1 nM), excellent selectivity over other opioid receptors (>1000×) and good brain permeability in rats (Cb,u/Cp,u = 0.29). Subsequent characterization of [3H](+)-11 showed a high level of specific binding and a brain bio-distribution pattern consistent with known NOP receptor expression. Furthermore, the in vivo brain binding of [3H](+)-11 in rats was inhibited by a selective NOP receptor antagonist in a dose–responsive manner. This overall favorable profile indicated that [3H](+)-11 is a robust radiotracer for pre-clinical in vivo receptor occupancy (RO) measurements and a possible substrate for carbon-11 labeling for positron emission tomography (PET) imaging in higher species.  相似文献   

14.
As the result of a rhJNK1 HTS, the imidazo[1,2-a]quinoxaline 1 was identified as a 1.6 μM rhJNK1 inhibitor. Optimization of this compound lead to AX13587 (rhJNK1 IC50 = 160 nM) which was co-crystallized with JNK1 to identify key molecular interactions. Kinase profiling against 125+ kinases revealed AX13587 was an inhibitor of JNK, MAST3, and MAST4 whereas its methylene homolog AX14373 (native JNK1 IC50 = 47 nM) was a highly specific JNK inhibitor.  相似文献   

15.
Substituted (E)-3-styryl-4H-chromen-4-ones 1ad, 3-[(1E,3E)-4-phenylbuta-1,3-dienyl]-4H-chromen-4-ones 2ad, (E)-3-styryl-2H-chromenes 3ad and 3-[(1E,3E)-4-phenylbuta-1,3-dienyl]-2H-chromenes 4ad were designed and synthesized to improve the anti-picornavirus activity of previously tested analogues. The new compounds were evaluated in vitro against human rhinovirus (HRV) serotypes 1B and 14 and enterovirus (EV) 71. All the compounds interfered with the replication of picornaviruses, although considerable differences were observed in the sensitivity of viruses to each compound. Generally, both HRVs were more susceptible than EV71 and their sensitivity was dependent upon the linker chain length as well as upon the oxidation state of the heterocyclic ring. (E)-3-Styryl-2H-chromene (3a) emerged as the most effective inhibitor of both HRVs showing IC50 values of 0.20 μM and 1.38 μM towards serotype 1B and 14, respectively. The potent activity was also coupled with low cytotoxicity resulting in high therapeutic indexes (250 and 36, respectively). Mechanism of action studies indicated that 3a, like structurally related compounds, behaves as a capsid binder interfering with the early stages of rhinovirus infection, probably at the adsorption and/or uncoating level.  相似文献   

16.
Adenosine receptors and monoamine oxidases are drug targets for neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. In the present study we prepared a library of 55 mostly novel tetrahydropyrimido[2,1-f]purinediones with various substituents in the 1- and 3-position (1,3-dimethyl, 1,3-diethyl, 1,3-dipropyl, 1-methyl-3-propargyl) and broad variation in the 9-position. A synthetic strategy to obtain 3-propargyl-substituted tetrahydropyrimido[2,1-f]purinedione derivatives was developed. The new compounds were evaluated for their interaction with all four adenosine receptor subtypes and for their ability to inhibit monoamine oxidases (MAO). Introduction of mono- or di-chloro-substituted phenyl, benzyl or phenethyl residues at N9 of the 1,3-dimethyl series led to the discovery of a novel class of potent MAO-B inhibitors, the most potent compound being 9-(3,4-dichlorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione (21g, IC50 human MAO-B: 0.0629 μM), which displayed high selectivity versus the other investigated targets. Potent dually active A1/A2A adenosine receptor antagonists were identified, for example, 9-benzyl-1-methyl-3-propargyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)dione (19f, Ki, human receptors, A1: 0.249 μM, A2A: 0.253 μM). Several compounds showed triple-target inhibition, the best compound being 9-(2-methoxybenzyl)-1-methyl-3-(prop-2-ynyl)-6,7,8,9-tetrahydro pyrimido [1,2-f]purine-2,4(1H,3H)-dione (19g, Ki A1: 0.605 μM, Ki A2A: 0.417 μM, IC50 MAO-B: 1.80 μM). Compounds inhibiting several different targets involved in neurodegeneration may exhibit additive or even synergistic effects in vivo.  相似文献   

17.
We report the discovery of N-((benzo[d][1,3]dioxol-5-yl)methyl)-6-phenylthieno[3,2-d]pyrimidin-4-amine (2a) as an apoptosis inducer using our proprietary cell- and caspase-based ASAP HTS assay, and SAR study of HTS hit 2a which led to the discovery of 4-anilino-N-methylthieno[3,2-d]pyrimidines and 4-anilino-N-methylthieno[2,3-d]pyrimidines as potent apoptosis inducers. Compounds 5d and 5e were the most potent with EC50 values of 0.008 and 0.004 μM in T47D human breast cancer cells, respectively. Compound 5d was found to be highly active in the MX-1 breast cancer model. Functionally, compounds 5d and 5e both induced apoptosis through inhibition of tubulin polymerization.  相似文献   

18.
Vascular endothelial growth factor (VEGF) plays important roles in tumor angiogenesis, and the inhibition of its signaling pathway is considered an effective therapeutic option for the treatment of cancer. In this study, we describe the design, synthesis, and biological evaluation of 2-acylamino-6-phenoxy-imidazo[1,2-b]pyridazine derivatives. Hybridization of two distinct imidazo[1,2-b]pyridazines 1 and 2, followed by optimization led to the discovery of N-[5-({2-[(cyclopropylcarbonyl)amino]imidazo[1,2-b]pyridazin-6-yl}oxy)-2-methylphenyl]-1,3-dimethyl-1H-pyrazole-5-carboxamide (23a, TAK-593) as a highly potent VEGF receptor 2 kinase inhibitor with an IC50 value of 0.95 nM. The compound 23a strongly suppressed proliferation of VEGF-stimulated human umbilical vein endothelial cells with an IC50 of 0.30 nM. Kinase selectivity profiling revealed that 23a inhibited platelet-derived growth factor receptor kinases as well as VEGF receptor kinases. Oral administration of 23a at 1 mg/kg bid potently inhibited tumor growth in a mouse xenograft model using human lung adenocarcinoma A549 cells (T/C = 8%).  相似文献   

19.
Current treatment for hepatitis C is barely satisfactory, there is an urgent need to develop novel agents for combating hepatitis C virus infection. This study discovered a new class of thieno[2,3-b]pyridine derivatives as HCV inhibitors. First, a hit compound characterized by a thienopyridine core was identified in a cell-based screening of our privileged small molecule library. And then, structure activity relationship study of the hit compound led to the discovery of several potent compounds without obvious cytotoxicity in vitro (12c, EC50 = 3.3 μM, SI >30.3, 12b, EC50 = 3.5 μM, SI >28.6, 10l, EC50 = 3.9 μM, SI >25.6, 12o, EC50 = 4.5 μM, SI >22.2, respectively). Although the mechanism of them had not been clearly elucidated, our preliminary optimization of this class of compounds had provided us a start point to develop new anti-HCV agents.  相似文献   

20.
A series of 3-benzyl chromenes and chromans were synthesized and tested in vitro against human rhinovirus (HRV) 1B and 14, two representative serotypes for rhinovirus group B and A, respectively. All the new compounds, with the exception of 3-benzyl-2H-chromene (3a), showed a potent activity against HRV serotype 1B within micro or submicromolar range (IC50s from 0.11 to 6.62 μM). The low cytotoxicity of all the derivatives resulted in compounds with high therapeutic index (TI). On the contrary, HRV 14 infection was only weakly inhibited by the majority of these compounds. The 3-benzylidenechromans 2b and 2c showed the highest anti-HRV 1B activity (IC50 0.12 and 0.11 μM, respectively) coupled with remarkable TI (625.00 and 340.91, respectively). Mechanism of action studies on (Z)-3-(4-chlorobenzylidene)chroman (2b) suggest that the new compounds behave as capsid binders and interfere with very early stages of HRV 1B replication, similarly to related flavanoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号