共查询到20条相似文献,搜索用时 0 毫秒
1.
C. M. Herrera X. Cerd M. B. García J. Guitin M. Medrano P. J. Rey A. M. Snchez‐Lafuente 《Journal of evolutionary biology》2002,15(1):108-121
By analysing patterns of phenotypic integration and multivariate covariance structure of five metric floral traits in nine Iberian populations of bumblebee‐pollinated Helleborus foetidus (Ranunculaceae), this paper attempts to test the general hypothesis that pollinators enhance floral integration and selectively modify phenotypic correlations between functionally linked floral traits. The five floral traits examined exhibited significant phenotypic integration at all populations, and both the magnitude and the pattern of integration differed widely among populations. Variation in extent and pattern of integration was neither distance‐dependent nor significantly related to between‐population variation in taxonomical composition and morphological diversity of the pollinator assemblage. Patterns of floral integration were closer to expectations derived from consideration of developmental affinities between floral whorls than to expectations based on a pollinator‐mediated adaptive hypothesis. Taken together, results of this study suggest that between‐population differences in magnitude and pattern of floral integration in H. foetidus are probably best explained as a consequence of random genetic sampling in the characteristically small and ephemeral populations of this species, rather than reflecting the selective action of current pollinators. 相似文献
2.
The pink, tubular, nectariferous flowers of Melocactus intortus (Cactaceae) in Puerto Rico are visited by native hummingbirds (Anthracothorax dominicus), but also by invasive honeybees (Apis mellifera) and ants (Solenopsis sp.). We sought to determine if the bees and ants significantly alter the pollination of M. intortus by measuring pollinator effectiveness. Using traditional estimates of effectiveness (visitation rate and seed set), our results show that hummingbirds were the most effective pollinators as expected. Bees and ants were less effective, and their contributions were one‐fourth to one‐tenth of that observed for hummingbirds. We then modified this measure of effectiveness by adding two components, fitness of progeny and temporal availability of visitors, both of which refine estimates of flower visitor effectiveness. With these new estimations, we found that the effectiveness values of all three animal visitors decreased; however, the role of hummingbirds as the principal pollinator was maintained, whereas the effectiveness values of bees and ants approached zero. By these new measures of overall pollinator effectiveness, the invasive honeybees and ants have little effect on the reproductive success of M. intortus. 相似文献
3.
Under many circumstances pollinators are expected to practice positive frequency–dependent foraging in colour-polymorphic plant populations. Theory suggests, however, that competition for floral resources might favor negative frequency–dependent foraging by some pollinator species, possibly contributing to the maintenance of flower colour variation by negative frequency–dependent selection. We addressed this idea with pollination studies of the California annual plant Clarkia xantiana ssp. xantiana (Onagraceae), which is polymorphic for the presence of conspicuous petal spots and is pollinated by several specialist bee species. At the level of entire pollinator assemblages, we did not detect significant fixed flower colour preferences or frequency–dependent foraging. Three species of specialist bee pollinators, however, showed contrasting forms of frequency–dependent foraging. The most widespread species, Hesperapis regularis (Melittidae) exhibited positive frequency dependence. Two other common species, Lasiglossum pullilabre (Halictidae) and Ceratina sequoiae (Apidae), preferred to visit whichever morph (unspotted or spotted) was locally in the minority. All three species were found to be effective at transferring C. xantiana pollen; H. regularis appeared most effective. Our findings suggest that a mixture of positive and negative frequency–dependent selection on flower colour occurs in C. xantiana , with the form and intensity of selection varying in space and time with pollinator assemblages. Negative frequency–dependent selection via pollination dynamics may play a larger role in maintaining genetic variation in flower colour than was previously thought. Our results also suggest an unappreciated form of niche partitioning among specialist pollinators. Genetic polymorphism in flower colour may sometimes facilitate pollinator coexistence. 相似文献
4.
5.
Alberto L. Teixido Fernando Valladares 《Botanical journal of the Linnean Society. Linnean Society of London》2014,176(4):540-555
Flower size and number usually evolve under pollinator‐mediated selection. However, hot, dry environments can also modulate display, counteracting pollinator attraction. Increased pollen deposition on larger flower displays may not involve higher female fitness. Consequently, stressful conditions may constrain flower size, favouring smaller‐sized flowers. The large‐flowered, self‐incompatible Mediterranean shrub Cistus ladanifer was used to test that: (1) this species suffers pollen limitation; (2) pollinators are spatially–temporally variable and differentially visit plants with more/larger flowers; (3) increased visits enhance reproduction under pollen limitation; (4) stressful conditions reduce female fitness of larger displays; and (5) phenotypic selection on floral display is not just pollinator‐mediated. We evaluated pollen limitation, related floral display to pollinator visits and fruit and seed production and estimated phenotypic selection. Flower size was 7.2–10.5 cm and varied spatially–temporally. Visitation rates (total visits/50 min) ranged from 0.26 to 0.43 and increased with flower size. Fruit set averaged 80% and seed number averaged 855, but only fruit set varied between populations and years. Selection towards larger flowers was detected under conditions of pollen limitation. Otherwise, we detected stabilizing selection on flower size and negative selection on flower number. Our results suggest that selection on floral display is not only pollinator‐dependent through female fitness in C. ladanifer. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 540–555. 相似文献
6.
Vigorous discussion of the degree of specialization in pollination interactions, combined with advances in the analysis of complex networks, has revitalized the study of entire plant–pollinator communities. Noticeably rare, however, are attempts to quantify temporal variation in the structure of plant–pollinator networks, and to determine whether the status of species as specialists or generalists is stable. Here we show that network structure varied through time in a montane meadow community from southern California, USA, in that pollinator species did not form the same links with plant species across years. Furthermore, composition of the generalized core group of species in the network varied among summers, as did the identity of those species involved in relationships that appeared to be reciprocally specialized within any one summer. These differences appear to be related to severe drought conditions experienced in the second summer of the 3 year study. In contrast to this variation, the pollinator community remained similarly highly nested in all three summers, even though species were packed into the nested matrix differently from year to year. These results suggest that plant–pollinator networks vary in detail through time, while retaining some basic topological properties. This dynamic aspect of community‐scale interactions has implications for both ecological and evolutionary inferences about pollination mutualisms. 相似文献
7.
The competitive relations between members of phylogenetically distant plant families Asteraceae (Centaurea and Cirsium) and Dipsacaceae (Knautia and Succisa) with purple anthodia, sharing a common wide range of pollen vectors and competing for them, were studied. The composition of pollen vectors is somewhat different in different plant species. Only bumble-bees, the most effective pollinators, were observed visiting every studied plants species. Syrphidae flies, Lepidoptera, Coleoptera, and some other insects were also observed in different proportions. The principal importance for pollination of the corolla tube size, correlating with the size of insect mouthparts, and the additional importance of particular traits of the inflorescence are confirmed. Convergent similarity of the aspect of anthodia in two species of different families is shown to be based on different structural and functional features. Insect pollinators are the factor of anthodia convergence. The plant species studied are divided into the following three groups, according to the proportion of bumble-bees among pollen vectors and to the range of species-specific pollinators; species coadapted to one pollinator taxon; species coadapted to two or three pollinator taxa; and species coadapted to many pollinator taxa. Asteraceae species in general (with the exception for Cirsium arvense) are characterized by constant contacts with a narrower range of pollinators than Dipsacaceae species (and Cirsium arvense), characterized by wider range of pollinators. Among flowering plants with similar anthodia, the tighter structural coadaptations of Asteraceae with their effective pollinators provide their greater competitive ability as compared to Dipsacaceae. 相似文献
8.
Chiara Ziello Andreas Böck Nicole Estrella Donna Ankerst Annette Menzel 《Ecography》2012,35(11):1017-1023
Increasing risk of pollinosis (hay fever) is one of the most anticipated consequences of climate change on human health. Wind‐pollinated plants are representative of allergenic species because they include species with the highest capability of causing allergy‐related diseases in humans. Therefore, changes in wind‐pollinated species may reflect impacts of climate change on allergenic plants. In particular, flowering is one of the developmental stages most affected by climate change. This report specifically addresses changes in flowering dates that have occurred during the three decades 1971–2000 as a function of pollination mode and woodiness. The assessment is made using a phenological data set comprising trends of flowering dates of 29 species in 983 locations in Europe. Linear mixed models assessing the statistical significance of trends while adjusting for spatial correlation are used. The main results indicate for the first time that the onset of flowering of wind‐pollinated plants advanced more than for insect‐pollinated plants, while full flowering phases tended to advance less. These novel findings are contrary to the results of Fitter and Fitter (2002) for Oxfordshire, who reported larger advances of insect‐pollinated plants. Onset of flowering and full flowering of insect‐pollinated species are more likely to advance for seasons early in the year; instead, wind‐pollinated plants showed no dependence of trends on the season (first flowering) or a decreased advance of phases that are early in the year (full flowering). The effect of woodiness could not be unambiguously defined, but seems to be of minor importance. The presented findings suggest a lengthening of the flowering period in general, which might lead to an increasing time of exposure to airborne pollen of allergic subjects, with consequent likely increment in severity and incidence of allergic symptoms. 相似文献
9.
Animal‐pollinated flowers are complex structures that may require a precise configuration of floral organs for proper function. As such, they represent an excellent system with which we can examine the role of phenotypic integration and modularity in morphological evolution. We use complementary quantitative genetic and comparative phenotypic approaches to examine correlations among floral characters in Nicotiana alata, N. forgetiana and their artificial fourth‐generation hybrids. Flowers of both species share basic patterns of genetic and phenotypic correlations characterized by at least two integrated character suites that are relatively independent of each other and are not disrupted by four generations of recombination in hybrids. We conclude that these integrated character suites represent phenotypic modules that are the product of a modular genetic architecture. Intrafloral modularity may have been critical for rapid specialization of these species to different pollinators. 相似文献
10.
In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open‐canopy or partially closed‐canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (QST) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (FST). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in FST at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature‐induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system. 相似文献
11.
Study of different antibiotic combinations for use in the elimination of Agrobacterium with kanamycin selection in carnation 总被引:3,自引:0,他引:3
Estopà Montserrat Marfà V. Melé E. Messeguer J. 《Plant Cell, Tissue and Organ Culture》2001,65(3):211-220
The effect of several β-lactam antibiotics on shoot regeneration, growth and rooting of carnation (Dianthus caryophyllus L.), and their use in combination with kanamycin in Agrobacterium-mediated genetic transformation studies, was determined. Carbenicillin, cefotaxime and ticarcillin increased the regeneration
rate when added alone in non-inoculated explants; whereas, with inoculated explants, this effect was only observed in ticarcillin-containing
medium. Cefotaxime inhibited root growth in both transgenic and non-transgenic shoots. Rooting of non-transgenic shoots was
completely inhibited in all culture media containing kanamycin. The different antibiotics used, alone or in combination, did
not prevent the occurrence of false positive shoots, but it was possible to select transgenic shoots when rooting was induced
in a kanamycin + ticarcillin-containing medium. Regenerated transformed shoots were free of Agrobacterium after culturing in rooting medium, as was proven by the PCR analysis for the nptI gene, the antibiogram and the culture of tissue pieces of transgenic shoots on LB broth. The use of kanamycin and timentin
with or without carbenicillin, was very useful in the transformation procedure, for the elimination of Agrobacterium in regenerated shoots before their transfer to greenhouse conditions and also in the selection of transgenic versus false-positive
shoots.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
12.
13.
F. STROBBE M.A. MCPEEK M. DE BLOCK L. DE MEESTER R. STOKS 《Journal of evolutionary biology》2009,22(6):1172-1182
Selection often operates not directly on phenotypic traits but on performance which is important as several traits may contribute to a single performance measure (many‐to‐one mapping). Although largely ignored in the context of selection, this asks for studies that link all relevant phenotypes with performance and fitness. In an enclosure experiment, we studied links between phenotypic traits, swimming performance and survival in two Enallagma damselflies. Predatory dragonflies imposed survival selection for increased swimming propensity and speed only in E. annexum; probably E. aspersum was buffered by the former species’ presence. Accordingly, more circular caudal lamellae, structures involved in generating thrust while swimming, were selected for only in E. annexum. Other phenotypic traits that contributed to swimming speed were apparently not under selection, probably because of many‐to‐one mapping (functional redundancy). Our results indicate that not only the phenotypic distributions of syntopic prey organisms but also many‐to‐one mapping should be considered when documenting phenotype–performance–fitness relationships. 相似文献
14.
The phenotypic view of selection assumes that genetic responses can be predicted from selective forces and heritability — or in the classical quantitative genetic equation: R = h2S. However, data on selection in bird populations show that often no selection responses is found, despite consistent selective forces on phenotypes and significant heritable variation. Such discrepancies may arise due to the assumption that selection only acts on observed phenotypes. We derive a general selection equation that takes into account the possibility that some relevant (internal or external) traits are not measured. This equation shows that the classic equation applies if selection directly acts on the measured, phenotypic traits. This is not the case when, for instance, there are unknown internal genetic trade-offs, or unknown common environmental factors affecting both trait and fitness. In such cases, any relationship between phenotypic selection and genetic response is possible. Fortunately, the classical model can be tested by comparing phenotypic and genetic covariances between traits and fitness; an indication that important internal or external traits are missing can thus be obtained. Such an analysis was indeed found in the literature; for selection on fledging weight in Great Tits it yielded valuable extra information. 相似文献
15.
Increased importance of genetic drift and selection for stress resistance have been predicted to lead to a reduction in the degree of phenotypic plasticity in populations at margins of a species' geographical range, relative to those in the centre. We examined the effect of population positioning within the species range on degree of active morphological plasticity to vegetation shade. Importantly, we discriminated between active, size-independent morphological adjustments in response to shade and passive changes in morphology caused by the dependence of morphological traits on plant size, as only the former are considered to be adaptive. Two closely related and ecologically similar Agrimonia species were examined in the same geographical location, where one species reaches the edge of its distribution (Agrimonia pilosa) and the other does not (A. eupatoria). Plasticity to light availability is likely to be advantageous for both species as they occupy habitats with variable light conditions. However, we hypothesised that high levels of environmental stress should lead to reduced active plasticity in marginal compared with more central populations. Agrimonia eupatoria exhibited active adjustments in leaf morphology in response to tree shade, and in elongation of stems and inflorescences in response to herbaceous shade. In contrast, A. pilosa exhibited very limited active plasticity. High active plasticity allowed A. eupatoria to retain constant shoot growth in a wide range of light conditions, while the lack of active plasticity in A. pilosa resulted in a strong dependence of shoot growth on light availability. We propose that high levels of environmental stress in marginal areas of a species' range may lead to a significant reduction in the degree of active plasticity. Our results clearly indicate that discrimination between active and passive plasticity is crucial for reaching valid conclusions about differences in adaptive plasticity between marginal and non-marginal populations. 相似文献
16.
17.
Questions: Is light availability the main factor driving forest dynamics in Pyrenean sub‐alpine forests? Do pines and firs differ in growth, mortality and morphological response to low light availability? Can differences in shade tolerance affect predictions of future biome changes in Pyrenean sub‐alpine forests in the absence of thermal limitation? Location: Montane–sub‐alpine ecotones of the Eastern Pyrenees (NE Spain). Methods: We evaluated morphological plasticity, survival and growth response of saplings of Scots pine, mountain pine and silver fir to light availability in a mixed forest ecotone. For each species, we selected 100 living and 50 dead saplings and measured size, crown morphology and light availability. A wood disk at root collar was then removed for every sapling, and models relating growth and mortality to light were obtained. Results: Fir had the lowest mortality rate (<0.1) for any given light condition. Pines had comparable responses to light availability, although in deep shade Scots pine risked higher mortality (0.35) than mountain pine (0.19). Pines and fir developed opposing strategies to light deprivation: fir employed a conservative strategy based on sacrificing height growth, whereas pines enhanced height growth to escape from shade, but at the expense of higher mortality risk. Scots pine showed higher plasticity than mountain pine for all architectural and morphological traits analysed, having higher adaptive capacity to a changing environment. Conclusions: Our results support the prediction of future biome changes in Pyrenean sub‐alpine forests as silver fir and Scots pine may find appropriate conditions for colonizing mountain pine‐dominated stands due to land‐use change‐related forest densification and climate warming‐related temperature increases, respectively. 相似文献
18.
AKIHIRO SAITO MISA SAITO YUSUKE ICHIKAWA MASAAKI YOSHIBA TOSHIAKI TADANO EITARO MIWA KYOKO HIGUCHI 《Plant, cell & environment》2010,33(2):174-187
To evaluate Ni dynamics at the subcellular level, the distribution and speciation of Ni were determined in wild‐type (WT) and Ni‐tolerant (NIT) tobacco BY‐2 cell lines. When exposed to low but toxic levels of Ni, NIT cells were found to contain 2.5‐fold more Ni (14% of whole‐cell Ni values) in their cell walls than WT cells (6% of whole‐cell Ni values). In addition to higher levels of Ni in the apoplast, a higher proportion (94%) of symplastic Ni was localized in the vacuoles of NIT cells than in the vacuoles of WT cells (81%). The concentration of cytosolic Ni in the NIT cells was significantly lower (18 nmol g?1 FW) than that in the WT cells (85 nmol g?1 FW). In silico simulation showed that 95% of vacuolar Ni was in the form of Ni‐citrate complexes, and that free Ni2+ was virtually absent in the NIT cells. On the other hand, the amount of free metal ions was markedly increased in WT cells because free citrate was depleted by chelation of Ni. A protoplast viability assay using BCECF‐AM further demonstrated that the main mechanism that confers strong Ni tolerance was present in the symplast as opposed to the cell wall. 相似文献
19.
Populations of Drosophila melanogaster subjected to extreme larval (CU) or adult (UC) densities for multiple generations were assayed for a variety of life history characters. When reared under either crowded or uncrowded larval conditions, populations which had been selected to tolerate the limitation of resources imposed by extreme larval (CU) crowding, exhibited greater starvation resistance and lipid content than did populations which do not routinely undergo larval density-dependent regulation. Previous studies have shown that the CU populations do not show a correlated increase in longevity; as has been generally observed for these characteristics in age-structured populations of D. melanogaster. This suggests that density-dependent natural selection may not always shape life histories of the same characteristic in the same direction that age-specific selection does. 相似文献
20.
Studies of interactions between farmed and wild salmonid fishes have suggested reduced fitness of farmed strains in the wild, but evidence for selection at the genic level is lacking. We studied three brown trout populations in Denmark which have been significantly admixed with stocked hatchery trout (19–64%), along with two hatchery strains used for stocking. The wild populations were represented by contemporary samples (2000–2006) and two of them by historical samples (1943–1956). We analysed 61 microsatellite loci, nine of which showed putative functional relationships [expressed sequence tag (EST)‐linked or quantitative trait loci]. FST‐based outlier tests provided support for diversifying selection at chromosome regions marked by three loci, two anonymous and one EST‐linked. Patterns of differentiation suggested that the loci were candidates for being under diversifying hitch‐hiking selection in hatchery vs. wild environments. Analysis of hatchery strain admixture proportions showed that in one wild population, two of the loci showed significantly lower admixture proportions than the putatively neutral loci, implying contemporary selection against alleles introduced by hatchery strain trout. In the most strongly admixed population, however, there was no evidence for selection, possibly because of immigration by stocked trout overcoming selection against hatchery‐derived alleles or supportive breeding practices allowing hatchery strain trout to escape natural selection. To our knowledge, this is the first study demonstrating footprints of selection in wild salmonid populations subject to spawning intrusion by farmed fish. 相似文献