首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By analysing patterns of phenotypic integration and multivariate covariance structure of five metric floral traits in nine Iberian populations of bumblebee‐pollinated Helleborus foetidus (Ranunculaceae), this paper attempts to test the general hypothesis that pollinators enhance floral integration and selectively modify phenotypic correlations between functionally linked floral traits. The five floral traits examined exhibited significant phenotypic integration at all populations, and both the magnitude and the pattern of integration differed widely among populations. Variation in extent and pattern of integration was neither distance‐dependent nor significantly related to between‐population variation in taxonomical composition and morphological diversity of the pollinator assemblage. Patterns of floral integration were closer to expectations derived from consideration of developmental affinities between floral whorls than to expectations based on a pollinator‐mediated adaptive hypothesis. Taken together, results of this study suggest that between‐population differences in magnitude and pattern of floral integration in H. foetidus are probably best explained as a consequence of random genetic sampling in the characteristically small and ephemeral populations of this species, rather than reflecting the selective action of current pollinators.  相似文献   

2.
  • Ornithophily has evolved in parallel several times during evolution of angiosperms. Bird pollination is reported for 65 families, including Bromeliaceae. One of the most diverse bromeliad is Billbergia, which comprises species pollinated mainly by hummingbirds.
  • Based on investigations on flowering phenology, morpho‐anatomy, volume and concentration of nectar, pollinators and breeding system, this paper explores the reproductive biology and pollinator specificity of B. distachia in a mesophytic semi‐deciduous forest of southeastern Brazil.
  • The results have show that B. distachia is pollinated by a single species of hermit hummingbird, Phaethornis eurynome, which search for nectar produced by a septal nectary, where the secretory tissue is located above the placenta. The species is self‐incompatible. The combination of pollinator specificity, due to long corolla tubes that exclude visitation of short‐billed hummingbirds, complete self‐incompatibility and non‐territorial behaviour of pollinators, it is very important to reduce pollen loss and increase gene flow within population.
  • Our results indicate that studies on pollination biology and reproduction are essential to understand the evolutionary history of pollination systems of plants since, at least in Billbergia, variation in the pollinator spectrum has been recorded for different habitats among Brazilian forests. Furthermore, according to our data, foraging of Phaethornis on flowers is independent of air temperature and humidity, while the main factor influencing hummingbird visitation is daylight. Considering current knowledge on climatic parameters influencing hummingbird foraging, pollination and reproductive biology of Neotropical flora and environment of the hermit hummingbird in tropical forests, new insights on plant–pollinator interaction are provided.
  相似文献   

3.
Pollination by nectarivorous birds is predicted to result in different patterns of pollen dispersal and plant mating compared to pollination by insects. We tested the prediction that paternal genetic diversity, outcrossing rate and realized pollen dispersal will be reduced when the primary pollinator group is excluded from bird‐pollinated plants. Pollinator exclusion experiments in conjunction with paternity analysis of progeny were applied to Eucalyptus caesia Benth. (Myrtaceae), a predominantly honeyeater‐pollinated tree that is visited by native insects and the introduced Apis mellifera (Apidae). Microsatellite genotyping at 14 loci of all adult E. caesia at two populations (n = 580 and 315), followed by paternity analysis of 705 progeny, revealed contrasting results between populations. Honeyeater exclusion did not significantly impact pollen dispersal or plant mating at Mount Caroline. In contrast, at the Chiddarcooping site, the exclusion of honeyeaters led to lower outcrossing rates, a threefold reduction in the average number of sires per fruit, a decrease in intermediate‐distance mating and an increase in near‐neighbour mating. The results from Chiddarcooping suggest that bird pollination may increase paternal genetic diversity, potentially leading to higher fitness of progeny and favouring the evolution of this strategy. However, further experimentation involving additional trees and study sites is required to test this hypothesis. Alternatively, insects may be effective pollinators in some populations of bird‐adapted plants, but ineffective in others.  相似文献   

4.
Pollinator‐mediated selection toward larger and abundant flowers is common in naturally pollen‐limited populations. However, floral antagonists may counteract this effect, maintaining smaller‐ and few‐flowered individuals within populations. We quantified pollinator and antagonist visit rates and determined a multiplicative female fitness component from attacked and non‐attacked flowers of the Brazilian hummingbird‐pollinated shrub Collaea cipoensis to determine the selective effects of pollinators and floral antagonists on flower size and number. We predicted that floral antagonists reduce the female fitness component and thus exert negative selective pressures on flower size and number, counteracting the positive effects of pollinators. Pollinators, mainly hummingbirds, comprised 4% of total floral visitation, whereas antagonist ants and bees accounted for 90% of visitation. Nectar‐robbers involved about 99% of floral antagonist visit rates, whereas florivores comprised the remaining 1%. Larger and abundant flowers increased both pollinator and antagonist visit rates and the female fitness component significantly decreased in flowers attacked by nectar‐robbers and florivores in comparison to non‐attacked flowers. We detected that pollinators favored larger‐ and many‐flowered individuals, whereas floral antagonists exerted negative selection on flower size and number. This study confirms that floral antagonists reduce female plant fitness and this pattern directly exerts negative selective pressures on flower size and number, counteracting pollinator‐mediated selection on floral attractiveness traits.  相似文献   

5.
Phenotypic matches between plants and their pollinators often are interpreted as examples of reciprocal selection and adaptation. For the two co‐occurring plant species, Heliconia bihai and H. caribaea in the Eastern Caribbean, we evaluated for five populations over 2 years the strength and direction of natural selection on corolla length and number of bracts per inflorescence. These plant traits correspond closely to the bill lengths and body masses of their primary pollinators, female or male purple‐throated carib hummingbirds (Eulampis jugularis). In H. bihai, directional selection for longer corollas was always significant with the exception of one population in 1 year, whereas selection on bract numbers was rare and found only in one population in 1 year. In contrast, significant directional selection for more bracts per inflorescence occurred in all three populations of the yellow morph and in two populations of the red morph of H. caribaea, whereas significant directional selection on corolla length occurred in only one population of the red morph and one population of the yellow morph. Selection for longer corollas in H. bihai may result from better mechanical fit, and hence pollination, by the long bills of female E. jugularis, their sole pollinator. In contrast, competition between males of E. jugularis for territories may drive selection for more bracts in H. caribaea. Competitive exclusion of female E. jugularis by territorial males also implicates pollinator competition as a possible ecological mechanism for trait diversification in these plants.  相似文献   

6.
Floral traits have largely been attributed to phenotypic selection in plant–pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator‐mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator‐mediated selection explained most of the between‐population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator‐mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.  相似文献   

7.
The influence of locally different species interactions on trait evolution is a focus of recent evolutionary studies. However, few studies have demonstrated that geographically different pollinator‐mediated selection influences geographic variation in floral traits, especially across a narrow geographic range. Here, we hypothesized that floral size variation in the Japanese herb Prunella vulgaris L. (Lamiaceae) is affected by geographically different pollinator sizes reflecting different pollinator assemblages. To evaluate this hypothesis, we posed two questions. (1) Is there a positive correlation between floral length and the proboscis length of pollinators (bumblebees) across altitude in a mountain range? (2) Does the flower–pollinator size match influence female and male plant fitness? We found geographic variation in the assemblage of pollinators of P. vulgaris along an altitudinal gradient, and, as a consequence, the mean pollinator proboscis length also changed altitudinally. The floral corolla length of P. vulgaris also varied along an altitudinal gradient, and this variation strongly correlated with the local pollinator size but did not correlate with altitude itself. Furthermore, we found that the size match between the floral corolla length and bee proboscis length affected female and male plant fitness and the optimal size match (associated with peak fitness) was similar for the female and male fitness. Collectively, these results suggest that pollinator‐mediated selection influences spatial variation in the size of P. vulgaris flowers at a fine spatial scale.  相似文献   

8.
Herbivory induces various responses in plants, thus altering the plants’ phenotype in chemical and morphological traits. Herbivore‐induced changes in vegetative plant parts, plant‐physiological mechanisms, and effects on plant‐animal interactions have been intensively studied from species to community level. In contrast, we are just beginning to examine herbivore‐induced effects on reproductive plant parts and flower–visitor interactions, especially in a community context. We investigated the effect of herbivory at different plant developmental stages on plant growth, floral and vegetative phenotype and reproduction in Sinapis arvensis (Brassicaceae). Additionally, we tested how herbivore‐induced plant responses affect flower–visitor interactions and plant reproduction in species‐rich communities. Our results indicate that the timing of herbivory affects the magnitude of changes in plant traits. Herbivory in early but not in late development accelerated the plant's flowering phenology, reduced vegetative growth, increased stem trichome density and altered floral morphology and scent. These findings suggest age‐dependent tradeoffs between growth, defense and reproduction. Herbivore‐induced changes in flower traits also affected flower–visitor interactions in a community context with effects on the structure of flower–visitor networks. However, changes in the network structure had neglectable effects on plant reproduction, i.e. plants were able to compensate altered flower visitor behavior. Thus, herbivory is a source of intraspecific variation in reproductive traits, which can be behaviorally relevant for potential pollinators. However, plants were capable to maintain reproductive success suggesting a tolerance against herbivory. We conclude that in our study system induced direct or indirect defenses that have often been shown to decrease negative effects of herbivores on vegetative plant parts come at no costs for plant reproduction.  相似文献   

9.
The pink, tubular, nectariferous flowers of Melocactus intortus (Cactaceae) in Puerto Rico are visited by native hummingbirds (Anthracothorax dominicus), but also by invasive honeybees (Apis mellifera) and ants (Solenopsis sp.). We sought to determine if the bees and ants significantly alter the pollination of M. intortus by measuring pollinator effectiveness. Using traditional estimates of effectiveness (visitation rate and seed set), our results show that hummingbirds were the most effective pollinators as expected. Bees and ants were less effective, and their contributions were one‐fourth to one‐tenth of that observed for hummingbirds. We then modified this measure of effectiveness by adding two components, fitness of progeny and temporal availability of visitors, both of which refine estimates of flower visitor effectiveness. With these new estimations, we found that the effectiveness values of all three animal visitors decreased; however, the role of hummingbirds as the principal pollinator was maintained, whereas the effectiveness values of bees and ants approached zero. By these new measures of overall pollinator effectiveness, the invasive honeybees and ants have little effect on the reproductive success of M. intortus.  相似文献   

10.
Under many circumstances pollinators are expected to practice positive frequency–dependent foraging in colour-polymorphic plant populations. Theory suggests, however, that competition for floral resources might favor negative frequency–dependent foraging by some pollinator species, possibly contributing to the maintenance of flower colour variation by negative frequency–dependent selection. We addressed this idea with pollination studies of the California annual plant Clarkia xantiana ssp. xantiana (Onagraceae), which is polymorphic for the presence of conspicuous petal spots and is pollinated by several specialist bee species. At the level of entire pollinator assemblages, we did not detect significant fixed flower colour preferences or frequency–dependent foraging. Three species of specialist bee pollinators, however, showed contrasting forms of frequency–dependent foraging. The most widespread species, Hesperapis regularis (Melittidae) exhibited positive frequency dependence. Two other common species, Lasiglossum pullilabre (Halictidae) and Ceratina sequoiae (Apidae), preferred to visit whichever morph (unspotted or spotted) was locally in the minority. All three species were found to be effective at transferring C. xantiana pollen; H. regularis appeared most effective. Our findings suggest that a mixture of positive and negative frequency–dependent selection on flower colour occurs in C. xantiana , with the form and intensity of selection varying in space and time with pollinator assemblages. Negative frequency–dependent selection via pollination dynamics may play a larger role in maintaining genetic variation in flower colour than was previously thought. Our results also suggest an unappreciated form of niche partitioning among specialist pollinators. Genetic polymorphism in flower colour may sometimes facilitate pollinator coexistence.  相似文献   

11.
Beneficial mutations fuel adaptation by altering phenotypes that enhance the fit of organisms to their environment. However, the phenotypic effects of mutations often depend on ecological context, making the distribution of effects across multiple environments essential to understanding the true nature of beneficial mutations. Studies that address both the genetic basis and ecological consequences of adaptive mutations remain rare. Here, we characterize the direct and pleiotropic fitness effects of a collection of 21 first‐step beneficial mutants derived from naïve and adapted genotypes used in a long‐term experimental evolution of Escherichia coli. Whole‐genome sequencing was able to identify the majority of beneficial mutations. In contrast to previous studies, we find diverse fitness effects of mutations selected in a simple environment and few cases of genetic parallelism. The pleiotropic effects of these mutations were predominantly positive but some mutants were highly antagonistic in alternative environments. Further, the fitness effects of mutations derived from the adapted genotypes were dramatically reduced in nearly all environments. These findings suggest that many beneficial variants are accessible from a single point on the fitness landscape, and the fixation of alternative beneficial mutations may have dramatic consequences for niche breadth reduction via metabolic erosion.  相似文献   

12.
13.
Traits associated with self-pollination are common in island plants. This pattern could simply reflect the vestige of selection during colonization. Alternatively (or in addition), the ability to self-pollinate may provide a reproductive assurance benefit in established island plant populations due to inferior island pollinator service. To test these alternatives I studied an introduced plant (Nicotiana glauca; Solanaceae) on the California mainland and on two Channel Islands colonized at different times (approximately 30 and 100 yr ago). I compared these populations in terms of (1) capacity for self-pollination (self-compatibility, autogamy, stigma-anther distance, and incidence of a crumpled floral morph) and (2) current selection for the ability to self-pollinate (pollinator service by hummingbirds and the effect of emasculation on reproductive success). In general, island plants exhibited a higher capacity for self-pollination than mainland plants, especially on the most recently colonized island. However, island plants were not visited less frequently or more variably, nor did I detect current selection for selfing on islands. This supports the hypothesis that selfing traits in island plants are the product of a filter to successful establishment during colonization and not of selection for selfing in established island populations.  相似文献   

14.
Flower size and number usually evolve under pollinator‐mediated selection. However, hot, dry environments can also modulate display, counteracting pollinator attraction. Increased pollen deposition on larger flower displays may not involve higher female fitness. Consequently, stressful conditions may constrain flower size, favouring smaller‐sized flowers. The large‐flowered, self‐incompatible Mediterranean shrub Cistus ladanifer was used to test that: (1) this species suffers pollen limitation; (2) pollinators are spatially–temporally variable and differentially visit plants with more/larger flowers; (3) increased visits enhance reproduction under pollen limitation; (4) stressful conditions reduce female fitness of larger displays; and (5) phenotypic selection on floral display is not just pollinator‐mediated. We evaluated pollen limitation, related floral display to pollinator visits and fruit and seed production and estimated phenotypic selection. Flower size was 7.2–10.5 cm and varied spatially–temporally. Visitation rates (total visits/50 min) ranged from 0.26 to 0.43 and increased with flower size. Fruit set averaged 80% and seed number averaged 855, but only fruit set varied between populations and years. Selection towards larger flowers was detected under conditions of pollen limitation. Otherwise, we detected stabilizing selection on flower size and negative selection on flower number. Our results suggest that selection on floral display is not only pollinator‐dependent through female fitness in C. ladanifer. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 540–555.  相似文献   

15.
Vigorous discussion of the degree of specialization in pollination interactions, combined with advances in the analysis of complex networks, has revitalized the study of entire plant–pollinator communities. Noticeably rare, however, are attempts to quantify temporal variation in the structure of plant–pollinator networks, and to determine whether the status of species as specialists or generalists is stable. Here we show that network structure varied through time in a montane meadow community from southern California, USA, in that pollinator species did not form the same links with plant species across years. Furthermore, composition of the generalized core group of species in the network varied among summers, as did the identity of those species involved in relationships that appeared to be reciprocally specialized within any one summer. These differences appear to be related to severe drought conditions experienced in the second summer of the 3 year study. In contrast to this variation, the pollinator community remained similarly highly nested in all three summers, even though species were packed into the nested matrix differently from year to year. These results suggest that plant–pollinator networks vary in detail through time, while retaining some basic topological properties. This dynamic aspect of community‐scale interactions has implications for both ecological and evolutionary inferences about pollination mutualisms.  相似文献   

16.
17.
The competitive relations between members of phylogenetically distant plant families Asteraceae (Centaurea and Cirsium) and Dipsacaceae (Knautia and Succisa) with purple anthodia, sharing a common wide range of pollen vectors and competing for them, were studied. The composition of pollen vectors is somewhat different in different plant species. Only bumble-bees, the most effective pollinators, were observed visiting every studied plants species. Syrphidae flies, Lepidoptera, Coleoptera, and some other insects were also observed in different proportions. The principal importance for pollination of the corolla tube size, correlating with the size of insect mouthparts, and the additional importance of particular traits of the inflorescence are confirmed. Convergent similarity of the aspect of anthodia in two species of different families is shown to be based on different structural and functional features. Insect pollinators are the factor of anthodia convergence. The plant species studied are divided into the following three groups, according to the proportion of bumble-bees among pollen vectors and to the range of species-specific pollinators; species coadapted to one pollinator taxon; species coadapted to two or three pollinator taxa; and species coadapted to many pollinator taxa. Asteraceae species in general (with the exception for Cirsium arvense) are characterized by constant contacts with a narrower range of pollinators than Dipsacaceae species (and Cirsium arvense), characterized by wider range of pollinators. Among flowering plants with similar anthodia, the tighter structural coadaptations of Asteraceae with their effective pollinators provide their greater competitive ability as compared to Dipsacaceae.  相似文献   

18.
Flower color polymorphism is relatively uncommon in natural flowering plants, suggesting that maintenance of different color morphs within populations is difficult. To address the selective mechanisms shaping pollen‐color dimorphism, pollinator preferences and reproductive performance were studied over three years in Epimedium pubescens in which some populations had plants with either green or yellow pollen (and anthers). Visitation rate and pollen removal and receipt by the bee pollinator (Andrena emeishanica) did not differ between the two color morphs. Compared to the green morph, siring success of the yellow morph's pollen was lower, but that of mixtures of pollen from green and yellow morphs was lowest. This difference, corresponding to in vivo and ex vivo experiments on pollen performance, indicated that pollen germination, rather than tube growth, of the green morph was higher than that of the yellow morph and was seriously constrained in both morphs if a pollen competitor was present. A rare green morph may invade a yellow‐morph population, but the coexistence of pollen color variants is complicated by the reduced siring success of mixed pollinations. Potential pollen competition between morphs may have discouraged the maintenance of multiple phenotypes within populations, a cryptic mechanism of competitive exclusion.  相似文献   

19.
Epigenetics, the science of heritable but modifiable information, is now a well‐accepted component of many research fields. Nevertheless, epigenetics has not yet found broad appreciation in one of the most exciting fields of biology: the comprehension of evolution. This is surprising, since the reason for the existence of this alternative information‐transmitting system lies certainly in the evolutionary advantage it provides. Theoretical considerations support a model in which epigenetic mechanisms allow for increasing phenotypic variability and permit populations to explore the adaptive landscape without modifications of the genotype. The data presented here support the view that modulating the epigenotype of the human bloodfluke Schistosoma mansoni by treatment of larvae with histone deacetylase inhibitor leads indeed to an increase of phenotypic variability. It is therefore conceivable that environmentally induced changes in the epigenotype release new phenotypes on which selection can act and that this process is the first step in adaptive evolution.  相似文献   

20.
Organisms commonly experience significant spatiotemporal variation in their environments. In response to such heterogeneity, different mechanisms may act that enhance ecological performance locally. However, depending on the nature of the mechanism involved, the consequences for populations may differ greatly. Building on a previous model that investigated the conditions under which different adaptive mechanisms (co)evolve, this study compares the ecological and evolutionary population consequences of three very different responses to environmental heterogeneity: matching habitat choice (directed gene flow), adaptive plasticity (associated with random gene flow), and divergent natural selection. Using individual‐based simulations, we show that matching habitat choice can have a greater adaptive potential than plasticity or natural selection: it allows for local adaptation while protecting genetic polymorphism despite global mating or strong environmental changes. Our simulations further reveal that increasing environmental fluctuations and unpredictability generally favor the emergence of specialist genotypes but that matching habitat choice is better at preventing local maladaptation by individuals. This confirms that matching habitat choice can speed up the genetic divergence among populations, cause indirect assortative mating via spatial clustering, and hence even facilitate sympatric speciation. This study highlights the potential importance of directed dispersal in local adaptation and speciation, stresses the difficulty of deriving its operation from nonexperimental observational data alone, and helps define a set of ecological conditions which should favor its emergence and subsequent detection in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号