共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
ProcNatlAcadSciUSA ,2 0 0 2 ,99:1 330 2~ 1 330 6早期研究表明番茄果实的梨形性状由位于第二染色体的一个隐性基因ovate所控制 ,ovate基因位于分子标记TG645附近 ,以此标记为探针筛选番茄BAC文库将该基因定位于一个长为 1 0 5kb的DNA片段内 ,进一步的分子标记定位表明该基因在含有 8个ORF的 55kbDNA内。通过PCR扩增了圆形番茄这一区域DNA并进行测序 ,结果表明突变体的ORF6中有三处发生了突变。ORF6由两个外显子和 1个内含子组成 ,有一个点突变和一个 2bp的插入或缺失突变… 相似文献
4.
棉纤维发育的分子生理机制 总被引:15,自引:1,他引:15
本文综述了棉纤维分化、发育的分子生理机制的研究现状,着重讨论了棉纤维细胞膨压的产生、细胞壁的松弛、结构分子的合成和加入、次生壁增厚的启始信号、纤维素的生物合成和细胞骨架系统控制纤维素沉积等机制。进而对本领域的研究前景提出了看法。 相似文献
5.
本文综述了棉纤维分化、发育的分子生理机制的研究现状,着重讨论了棉纤维细胞膨压的产生、细胞壁的松弛、结构分子的合成和加入、次生壁增厚的启始信号、纤维素的生物合成和细胞骨架系统控制纤维素沉积等机制。进而对本领域的研究前景提出了看法。 相似文献
6.
7.
表观遗传修饰异常见于人类的多种疾病(如肿瘤、老年性疾病、发育源性疾病等),影响着这些疾病的发生发展。已有的研究表明,异常表观遗传改变可以作为疾病状态和疾病预测的生物标志物。表观遗传修饰改变的可逆性和可控性也为疾病早期的预防和治疗提供了新策略。本文对DNA甲基化修饰、组蛋白共价修饰、非编码RNA等三种表观遗传方式在肿瘤、老年性疾病和发育源性疾病的研究,以及三者作为表遗传生物标志物在疾病早期诊断和治疗的应用展开介绍,以期为肿瘤、老年性和发育源性相关疾病的诊断与治疗提供借鉴和 参考。 相似文献
8.
以番茄(Solanum lycopersicum L.)品种‘Micro Tom’为试材,从其果实中克隆得到番茄类钙调磷酸酶B基因(Tomato Calcineurin B-Like gene,SlCBL1),构建其带有报告基因的e-GFP植物表达载体,分析番茄果实中SlCBL1基因超表达与成熟发育进程的相互关系。结果显示:(1)与对照非转基因植株以及转空载植株相比,转SlCBL1基因番茄中SlCBL1基因过量表达,而且能够使番茄果实成熟期提前3~5d,表明SlCBL1基因可促进番茄果实成熟。(2)番茄果实成熟相关基因的表达量也受到不同程度调控,其中番茄成熟过程中的色素合成基因、乙烯路径基因以及果实成熟相关转录因子都受到强烈的调控,与对照相比表达量分别上调5~10倍。研究表明,SlCBL1基因能够促进番茄果实成熟,而且通过影响色素合成基因以及果实成熟相关转录因子来调控番茄果实成熟。 相似文献
9.
发育是由基因的特定时空表达模式来调控的,其表观遗传机制已越来越受到关注。组蛋白精氨酸甲基化是一种重要的翻译后修饰,由蛋白质精氨酸甲基化酶催化产生,对染色体的结构与功能具有重要调控作用。不同位点的精氨酸甲基化与其相邻位点的翻译后修饰具有复杂的对话机制,并可招募或阻碍相关效应分子的结合,进而导致转录激活或抑制。斑马鱼作为一种重要的发育生物学研究模式动物,已为蛋白质精氨酸甲基化酶在早期发育过程中的生理功能的研究提供了大量资料。该文对组蛋白精氨酸甲基化的产生、对话调控机制及其对斑马鱼早期发育调控功能的研究进行综述。 相似文献
10.
内源脱落酸和赤霉素对番茄发育果实和种子水分关系的影响 总被引:3,自引:0,他引:3
利用热偶湿度计研究了野生型、GA-缺陷型和ABA-缺陷型番茄发育过程中果实种子的水分关系,发现除ABA-缺陷型种子胶囊和果肉水势变化特殊外,3种类型果实水分状况变化基本一致;在整个发育时期内,前期种子胶囊和果肉水分流向种子,中期种子水分流向种子胶囊和果肉,后期种子和果实间的水势达到平衡。鉴于种胚脱水是一种主动过程,种胚水势一直低于整个种子、种子胶囊和果肉。内源赤霉素可明显增加果实和种子的重量,但对 相似文献
11.
Anna Czerednik Marco Busscher Gerco C. Angenent Ruud A. de Maagd 《Plant biotechnology journal》2015,13(2):259-268
Tomato is one of the most cultivated vegetables in the world and an important ingredient of the human diet. Tomato breeders and growers face a continuous challenge of combining high quantity (production volume) with high quality (appearance, taste and perception for the consumers, processing quality for the processing industry). To improve the quality of tomato, it is important to understand the regulation of fruit development and of fruit cellular structure, which is in part determined by the sizes and numbers of cells within a tissue. The role of the cell cycle therein is poorly understood. Plant cyclin‐dependent kinases (CDKs) are homologues of yeast cdc2, an important cell cycle regulator conserved throughout all eukaryotes. CDKA1 is constitutively expressed during the cell cycle and has dual functions in S‐ and M‐phase progression. We have produced transgenic tomato plants with increased expression of CDKA1 under the control of the fruit‐specific TPRP promoter, which despite a reduced number of seeds and diminished amount of jelly, developed fruits with weight and shape comparable to that of wild‐type fruits. However, the phenotypic changes with regard to the pericarp thickness and placenta area were remarkable. Fruits of tomato plants with the highest expression of CDKA1 had larger septa and columella (placenta), compared with wild‐type fruits. Our data demonstrate the possibility of manipulating the ratio between cell division and expansion by changing the expression of a key cell cycle regulator and probably its activity with substantial effects on structural traits of the harvested fruit. 相似文献
12.
Genes for control of plant stature and form 总被引:4,自引:0,他引:4
13.
Nubia B. Eloy Marcelo de Freitas Lima Paulo C.G. Ferreira 《Critical Reviews in Plant Sciences》2015,34(5):487-505
The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that plays a major role in the progression of the eukaryotic cell cycle. This unusual protein complex targets key cell cycle regulators, such as mitotic cyclins and securins, for degradation via the 26S proteasome by ubiquitination, triggering the metaphase-to-anaphase transition and exit from mitosis. Because of its essential role in cell cycle regulation, the APC/C has been extensively studied in mammals and yeasts, but relatively less in plants. Evidence shows that, besides its well-known role in cell cycle regulation, the APC/C also has functions beyond the cell cycle. In metazoans, the APC/C has been implicated in cell differentiation, disease control, basic metabolism and neuronal survival. Recent studies also have shed light on specific functions of the APC/C during plant development. Plant APC/C subunits and activators have been reported to play a role in cellular differentiation, vascular development, shoot branching, female and male gametophyte development and embryogenesis. Here, we discuss our current understanding of the APC/C controlling plant growth. 相似文献
14.
Whereas most plant suspension cultures are grown heterotrophically in the presence of sugars, a limited number of photoautotrophic cultures have been established which are able to grow with CO2 as the sole carbon source. Photoautotrophic cultures are useful to address various aspects of photosynthesis, source-sink regulation, nitrogen metabolism, production of secondary metabolites, and defence responses. The homogenous populations of these cultures provide an ideal and sensitive system to obtain reproducible results. The availability of an increasing number of photoautotrophic cultures from different economically important species provides the basis also for practical applications. 相似文献
15.
In this study, a flow-cytometric cell cycle analysis method to assess instantaneous growth rate of whole larvae of the Australian barramundi Lates calcarifer was developed and validated. High-resolution DNA measurements of either fresh, frozen or RNAlater-preserved larvae (gap0-gap1, G(0) -G(1), coefficient of variation (c.v.) < 3, 4 and 5%, respectively) enabled the deconvolution of the DNA histogram and assignment of the proportion of nuclei into cell cycle compartments G(0) -G(1), S (DNA synthesis) and G(2) -M (Gap2-Mitosis). This technique can be also used for individual fish tissues such as brain, liver, fin and muscle. For the first time, the combined proportion of replicating nuclei (into S and G(2) -M phases) of whole fish larvae and absolute growth rate in length (mm day(-1)) has been correlated in commercial aquaculture conditions. Fast growing L. calcarifer larvae had an overall hyperplasia advantage as indicated by a greater proportion of cells in the S+G(2) -M phase compared with slow growing larvae, which might explain the increasing differences in size during culture. In a fasting trial, larvae ceased growth while maintaining the constant initial rates of cell division throughout a 6 day period. For a highly fed fast growing control group, cell division rates significantly increased after day 4. Flow-cytometric cell cycle analysis of whole fish larvae may provide fish biologists and aquaculturists with a better understanding of how cell division rates influence early growth in natural and artificial environments. 相似文献
16.
Fruit size within a tomato (Lycopersicon esculentum Mill.) truss depends on both fruit position in the truss and the time of pollination among fruits. In the natural pollination sequence a difference of 5 days in the pollination of proximal and distal flowers results in significant final size differences between proximal and distal fruits. These final size differences were eliminated when all flowers were pollinated simultaneously. At anthesis proximal ovaries have higher cell numbers than distal ovaries but the cell division activity and cell enlargement in both positions was similar in the first 10 days of fruit growth. Simultaneous pollination resulted in lower cell numbers in proximal but higher cell numbers in distal fruits compared to control fruits.Hormone levels in different sized fruits were measured using radioimmunoassays. Cytokinin concentration during the cell division period indicated a possible role in the regulation of cell division. With other hormones no obvious correlations were found. The results are discussed in relation to factors determining final fruit size in tomato. 相似文献
17.
18.
Molecular genetics of auxin and cytokinin 总被引:9,自引:0,他引:9
19.
The aim was to review knowledge about the interface betweenplant growth regulators and molecular checkpoints of the cell cycle. Atwhat level of biochemical regulation of the cell cycle do plant growthregulators interface? Are there different levels of interfacingdependent on the plant growth regulator involved? As a preamble totackling these questions, we overview the eukaryotic cell cycle withparticular emphasis on checkpoints that regulate the transition fromG0-G1-S-phase and G2-M. Cytokinins feature strongly as activators ofcell division in plants both in vivo and in vitro.Recent research has shown that zeatin treatment led to the up-regulationof CycD3 in Arabidopsis. This is a D-type cyclin showing stronghomology with vertebrate D cyclins which themselves are up-regulated byextracellular growth factors. Benzyladenine treatment can also shortenthe duration of S-phase through recruitment of latent origins of DNAreplication. Kinetin is involved in the phosphoregulation of the G2-Mcheckpoint; the major cyclin-dependent kinase (Cdk) at this checkpointhas recently been shown to be dephosphorylated as a result of cytokinintreatment, an effect which can also be mimicked by the fission yeastCdc25 phosphatase. Hence, a picture emerges of a cytokinin-inducedcontinuum of cell cycle activation through the up-regulation of a plantD-type cyclin at the G1 checkpoint and the phosphoregulation of the Cdkat the G2/M checkpoint. During S-phase, we argue for a link betweencytokinins and the proteins associated with replication origins.Gibberellic acid (GA) treatment induces internode elongation. Indeepwater rice, this response is mediated, at least partly, by aGA-induced up-regulation of a cyclin-Cdk at the G2-M checkpoint. Recentevidence has also linked abscisic acid to a cyclin-dependent kinaseinhibitor. These, so-called CKIs are negative regulators of Cdks whichfits with ABA's general role in growth inhibition; we await news ofethylene interactions. We highlight two instances of plant growthregulator-cell cycle interfacing during development, arguing for aninvolvement in microtubule orientation as a prerequisite to leafinitiation, and suggest a link between IAA and the activation of celldivisions in the pericycle required for lateral root initiation. A newD-type cyclin, recently discovered in Arabidopsis, may have akey role in this process. Finally, a model is presented which features ageneralised cyclin-Cdk checkpoint exhibiting various interfaces with theplant growth regulators. 相似文献
20.
细胞周期调控因子能通过影响细胞周期对植物细胞的生长、分裂和分化产生作用,进而调节植物的生长发育。本文综述了近几年来植物细胞周期调控因子中细胞周期蛋白(cyclin,CYC)、周期蛋白依赖激酶(cyclin-dependent kinase,CDK)等的作用机理及研究进展,阐述了各调控因子在植物生长发育过程中的作用。 相似文献