首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
曼陀罗种子休眠机理与破眠方法研究   总被引:6,自引:0,他引:6  
通过对曼陀罗种子生活力测定、发芽试验、吸水率测定及种子萌发抑制物研究,揭示曼陀罗种子休眠机理,并利用物理、化学法处理曼陀罗种子,以探寻打破曼陀罗种子休眠的最佳方法.结果表明:(1)新采收的曼陀罗种子为综合休眠,休眠原因包括:种皮障碍、缺少萌发所需激素以及种皮和种仁中存在萌发抑制物,其中种皮障碍是限制种子萌发的首要因素.(2)室温存储6个月可解除曼陀罗种子种仁的休眠,但种皮障碍始终是其种子萌发的限制因素.(3)机械摩擦、浓H2SO4处理和NaOH处理均可打破除曼陀罗种皮的休眠障碍,促进种子萌发,其中用10% NaOH处理90 min为破除曼陀罗种皮休眠障碍的最佳方法,且发芽率比对照提高了83%.  相似文献   

2.
种子的萌发能力由胚周围组织(种皮和胚乳)强加的物理限制与胚的生长潜能之间的平衡所决定.覆盖胚根尖端的珠孔端胚乳细胞的弱化被植物激素赤霉素(gibberellin, GA)促进但被脱落酸抑制,是胚根伸出的重要前提.GA是一种调控植物许多关键生理过程,如种子萌发、根和茎的伸长、开花、座果和种子发育的重要激素. GA在种子萌发与休眠解除中的作用主要受其生物合成与分解代谢和信号转导途径的调控.本文主要综述了GA的生物合成与代谢、GA的信号转导以及它们对种子萌发和休眠解除调控的研究进展.此外,本文也提出了本领域需要进一步研究的科学问题,试图为解释GA调控种子萌发与休眠的分子机理提供新的研究信息.  相似文献   

3.
为掌握裕民贝母种子休眠的形态响应机制,判断外源GA_3能否有效解除种子形态休眠,对CK和GA_3:30 mg/L处理下种子的形态结构及亚微结构变化规律进行比较。结果表明:(1)GA_3:30 mg/L处理下种子的形态休眠时间为60 d,比CK处理提前20 d,胚率从22.33%提高到87.67%,然后种子进入生理休眠阶段;(2)种子具翅,质轻型小,胚完成形态休眠后结构分化仍不明显;(3)随种子形态休眠的打破,种皮颜色不断加深,胚乳不断水解,胚不断生长发育,胚率提高至恒定;(4)随种子形态休眠的解除,种皮气孔器结构稳定,但叶绿体数量持续增加,种皮、胚乳及胚的亚微结构变化不明显,仅胚乳表皮细胞破损严重。  相似文献   

4.
两种结缕草种子休眠及萌发特性   总被引:5,自引:0,他引:5  
通过测定兰引Ⅲ号结缕草和青岛结缕草休眠种子和解除休眠种子的吸水率、呼吸强度和脱氢酶活性等萌发生理指标,探讨了结缕草种子的休眠类型。试验结果表明,解除休眠的结缕草种子的吸水率大于未处理的种子。解除休眠种子的呼吸强度、脱氢酶活性都有较大幅度的增长,显著高于未处理。结缕草种子萌发期需30~35℃高温和充足光照。两种结缕草种子的颖壳、种皮的透性障碍及种子内存在发芽抑制物质是导致种子休眠的主要原因,属于混合休眠类型。  相似文献   

5.
蔷薇种子的休眠及解除方法   总被引:3,自引:0,他引:3  
分析了蔷薇(Rosa L.)种子休眠原因、解除休眠方法以及环境条件对休眠与萌发的影响.蔷薇种子休眠的主要原因有瘦果果皮和种皮的限制作用,胚生理休眠以及果肉、瘦果果皮、种皮和胚中的抑制物质.解除休眠的方法包括去除瘦果果皮限制、解除胚的生理休眠、去除抑制物质等.种子发育过程中及成熟后,环境因子,如温度、水分和光照,对种子休眠和萌发有影响.此外,微生物、果实采集时间也对种子休眠及萌发有较大影响.蔷薇种子的休眠机制复杂,且种间差异很大.  相似文献   

6.
新疆干旱区植物藜的种子异型性及其萌发机理   总被引:2,自引:0,他引:2  
新疆干旱区分布的植物藜(Chenopodium album)的种子有黑色和褐色两种类型。对藜的异型性种子从形态结构、不同环境因素及激素或化学物质对萌发的影响以及同工酶谱等方面进行了研究,并对其萌发及适应异质环境的机理进行了讨论。结果表明:(1)藜的异型性种子在形态结构、萌发休眠特性等方面都存在明显差异:黑色种子种皮厚且硬,休眠,萌发慢,萌发率低;褐色种子种皮薄而软,不休眠,萌发快且萌发率高;(2)黑色种子的休眠可通过切除胚根外缘种皮得以完全解除;(3)赤霉素、乙烯利对黑色种子的萌发无明显促进作用;KNO3可较显著促进黑色种子的萌发;协同使用乙烯利和KNO3时,可显著提高黑种子萌发率,完全打破休眠;(4)黑色种子和褐色种子的酯酶、过氧化物酶及过氧化氢酶同工酶谱带存在差异;(5)黑色种子的萌发需要光照,而褐色种子则对光不敏感;低温贮藏对二者的萌发均无显著影响,尽管黑色种子的萌发率有波动。研究结果初步显示黑色种子的休眠是内源(胚)和外源(种皮)因素共同所致。藜的种子异型性及其萌发机理的形成是其对新疆干旱区异质化环境的高度适应。  相似文献   

7.
种子休眠是植物本身适应环境和延续生存的一种特性,是种子植物进化的一种稳定对策。野生植物特别是原产温带的植物,其种子大多有深而长的休眠期。关于种子休眠的概念有多种,这些概念引出了许多学说、假说和模型。种壳障碍、胚形态发育不完全和生理后熟以及种子中含有化学抑制剂等,都可导致种子休眠。根据不同的分类标准可将种子分成不同类型,一般将种子分为强迫休眠和机体休眠;机体休眠又可分为外部休眠、内部休眠和综合休眠。植物种类不同休眠特性也不同;同种植物的种子来源于不同的居群和植株时,若采集时期不同,其休眠也可能不同;甚至在同一果实中的不同种子,休眠特性亦可能有差异。影响休眠性状表达的基因既有核基因,也有质基因,休眠通常表现为一种受多基因控制的数量性状。种子休眠具有重要的生态学意义,能有效地调节种子萌发的时空分布。研究种子的休眠特性和机理及其解除方法,有助于农业生产和植物多样性保护。  相似文献   

8.
种子休眠机理研究概述   总被引:37,自引:1,他引:36  
种子休眠是植物本身适应环境和延续生存的一种特性,是种子植物进化的一种稳定对策。野生植物特别是原产温带的植物,其种子大多有深而长的休眠期。关于种子休眠的概念有多种,这些概念引出了许多学说、假说和模型。种壳障碍、胚形态发育不完全和生理后熟以及种子中含有化学抑制剂等,都可导致种子休眠。根据不同的分类标准可将种子分成不同类型,一般将种子分为强迫休眠和机体休眠;机体休眠又可分为外部休眠、内部休眠和综合休眠。植物种类不同休眠特性也不同;同种植物的种子来源于不同的居群和植株时,若采集时期不同,其休眠也可能不同;甚至在同一果实中的不同种子,休眠特性亦可能有差异。影响休眠性状表达的基因既有核基因,也有质基因,休眠通常表现为一种受多基因控制的数量性状。种子休眠具有重要的生态学意义,能有效地调节种子萌发的时空分布。研究种子的休眠特性和机理及其解除方法,有助于农业生产和植物多样性保护。  相似文献   

9.
种子休眠是植物自身调节后代繁殖时间节律以适应生长环境的最重要方式,喀斯特是一种特殊的植物生长环境,植物种子休眠对这种生境适应的研究缺乏.为探讨种子休眠与种子大小、散落时间之间的联系,揭示喀斯特植物在长期的适应过程中的生殖对策,对滇中喀斯特岩溶地区的19科35种植物的种子萌发和休眠类型进行了初步研究.结果表明:(1)35种植物中,休眠物种(19种,54.29%)比不休眠物种多(16种,45.71%);(2)19种休眠的物种中,15种具生理休眠,4种具物理休眠,没有形态休眠、形态-生理休眠和联合休眠的植物;(3)具物理休眠的植物种子明显大于不休眠和生理休眠的植物种子;(4)雨季初期(4~7月)散落的种子不休眠比例很高(75.00%),而雨季后期(10月)和旱季(11月至次年3月)散落的种子的休眠比例很高,分别达80.00%和61.54%;(5)68.75%的乔木休眠;灌木的休眠比例为33.33%;藤本植物休眠和不休眠的物种比例相差不大;草本植物大部分(66.67%)不休眠.  相似文献   

10.
为探究低温层积过程中桃儿七种子细胞壁代谢及种皮超微结构与休眠解除的内在联系,该研究通过低温层积解除桃儿七种子休眠,分析休眠解除过程中种子不同部位细胞壁组分及相关代谢酶的变化,同时利用扫描电镜对种皮的超微结构进行观察。结果表明,(1)桃儿七种皮主要由角质层、栅状石细胞层及海绵组织层3层构成,在层积过程中,种皮内部的海绵组织逐步疏松膨胀,种皮表面破损加剧;(2)种子不同部位的细胞壁组分具有明显差异,整个层积过程中,种胚、种皮和胚乳中的纤维素含量均在层积中期(45 d和60 d)降至最低,3个部位的纤维素酶活性在层积中期对应升高;种胚和种皮内的半纤维素含量均在层积中期显著下降,种皮中甘露聚糖酶活性和木糖苷酶活性在层积中期时相应达到最大;3个部位的果胶含量均在层积后期(75 d和90 d)时显著下降,而种皮和胚乳中多聚半乳糖醛缩酶活性也在层积后期相应升高;(3)种胚和胚乳内过氧化物酶活性在层积75 d和90 d时明显下降,而SOD活性在此时显著上升。(4)种子不同部位3种木质素单体的组成比例具有明显区别,同时3种木质素单体含量均随层积时间的延长而显著降低,且胚乳和种皮中的S-木质素含量对种子萌发存在显著的负向影响关系。研究认为,在低温层积过程中,桃儿七种子内细胞壁组分纤维素、半纤维素及木质素的逐步酶解,活性氧作用下的细胞壁松弛以及海绵组织层的疏松膨胀和种皮的破裂,破坏了细胞壁的刚性结构,促使种子机械束缚力降低,吸水性能提高、胚根生长能力增强,最终导致其休眠解除。  相似文献   

11.
The soybean callus assay was used to study the effect of stratification on the cytokinin levels of the embryo dormant seed of Protea compacta R.Br. and the seed of Leucadendron dapbnoides Meisn., where dormancy is coat imposed. Chilling the seed for 30 days increased germination significantly, and resulted in a simultaneous increase in the butanol soluble cytokinins of both species. It would appear as if these compounds are either synthesized or released from a bound form in embryo dormant seed. In contrast, an interconversion from water soluble to butanol soluble cytokïnins appears to account for the increase where dormancy is coat imposed. The results also indicate that for germination to take place a threshold concentration of cytokinin may be required. It is suggested that the increase in butanol soluble cytokinins may lead to the breaking of dormancy, probably by increasing radicle elongation and/or cotyledon expansion.  相似文献   

12.
The Arabidopsis endosperm consists of a single cell layer surrounding the mature embryo and playing an essential role to prevent the germination of dormant seeds or that of nondormant seeds irradiated by a far red (FR) light pulse. In order to further gain insight into the molecular genetic mechanisms underlying the germination repressive activity exerted by the endosperm, a "seed coat bedding" assay (SCBA) was devised. The SCBA is a dissection procedure physically separating seed coats and embryos from seeds, which allows monitoring the growth of embryos on an underlying layer of seed coats. Remarkably, the SCBA reconstitutes the germination repressive activities of the seed coat in the context of seed dormancy and FR-dependent control of seed germination. Since the SCBA allows the combinatorial use of dormant, nondormant and genetically modified seed coat and embryonic materials, the genetic pathways controlling germination and specifically operating in the endosperm and embryo can be dissected. Here we detail the procedure to assemble a SCBA.  相似文献   

13.
Heretofore, no study has determined how germination of ingested seeds is affected by the kind (class) of dormancy nor by seed dormancy x seed size interaction. Thus, we aimed to determine the effects of seed size, kind of dormancy and their interaction on germination of defecated seeds using a meta-analysis. We collected data for 366 plant species in 97 plant families from 76 publications. In general, gut passage significantly increased germination percentage of defecated seeds by 5% compared with that of control seeds. Germination percentages of non-dormant, physiologically dormant, and morphologically/morphophysiologically dormant seeds (all water-permeable) significantly decreased after gut passage by 40, 18, and 14%, respectively, compared with control seeds (non-gut-passed). Changes in germination percentage of seeds with physical dormancy (water-impermeable) were positive, and gut passage increased germination by 69% compared with control seeds. Germination of small seeds decreased 8% after gut passage, whereas germination of both medium and large seeds increased by 18%. However, changes in germination percentage differed between categories of seed size in each class of dormancy. In physically dormant seeds, germination of all seed sizes improved after gut passage, and the magnitude of increase was higher for large than for medium and small seeds. Thus, gut passage increased germination of medium-size water-permeable seeds (physiologically dormant and morphologically/morphophysiologically dormant) more than it did for large and small seeds. However, gut-passage decreased or did not change the germination percentage of non-dormant seeds. Seed size and kind of dormancy should be included in studies on the effect of gut passage on germination.  相似文献   

14.
15.
BACKGROUND AND AIMS: Although a claim has been made that dormancy cycling occurs in seeds of Ipomoea lacunosa (Convolvulaceae) with physical dormancy, this would seem to be impossible since the water gap cannot be closed again after it opens (dormancy break). On the other hand, changes in sensitivity (sensitive <--> non-sensitive) to dormancy-breaking factors have been reported in seeds of Fabaceae with physical dormancy. The primary aim of the present study was to determine if sensitivity cycling also occurs in physically dormant seeds of I. lacunosa. METHODS: Treatments simulating conditions in the natural habitat of I. lacunosa were used to break seed dormancy. Storage of seeds at temperatures simulating those in spring, summer, autumn and winter were tested for their effect on sensitivity change. Seeds made non-dormant were stored dry in different temperature regimes to test for dormancy cycling. In addition, seeds collected on different dates (i.e. matured under different climatic conditions) were used to test for maternal effects on sensitivity to dormancy-breaking factors. KEY RESULTS: Sensitivity was induced by storing seeds under wet conditions and reversed by storing them under dry conditions at low (< or = 5 degrees C) or high (> or = 30 degrees C) temperatures, demonstrating that seeds of I. lacunosa can cycle between sensitive and insensitive states. Sensitive seeds required > or = 2 h at 35 degrees C on moist sand for release of dormancy. However, there is no evidence to support dormancy cycling per se. Conceptual models are proposed for sensitivity cycling and germination phenology of I. lacunosa in the field. CONCLUSIONS: Seasonal germination behaviour of physically dormant I. lacunosa seeds can be explained by sensitivity cycling but not by dormancy cycling per se. Convolvulaceae is only the second of 16 families known to contain species with physical dormancy for which sensitivity cycling has been demonstrated.  相似文献   

16.
The time course of protein synthesis in embryos of dormant and afterripened Agrostemma githago seeds was studied. In embryos of afterripened geminating seeds, protein synthesis increased in three successive stages: (a) concurrent with swelling; (b) during the lag phase between the completion of water uptake and the onset of growth; and (c) immediately after protrusion through the seed coat. Embryos of dormant seeds showed the first increase but not the second unless dormancy was broken by imbibition at 4°C. This indicates that dormancy affects processes prior to the onset of growth. The third increase was largely due to higher oxygen availability after the rupture of the seed coat and not to actual growth. It could also be elicited in dormant embryos by isolating them from the seeds.

Electrophoretic analysis of the newly synthesized proteins demonstrated that the patterns of dormant and afterripened embryos became significantly different in both axes and cotyledons only just prior to the onset of axis elongation. Thereafter, the differences became larger.

When afterripened or dormant seeds were transferred from a low, germination-permitting to a high, germination-inhibiting temperature, the seeds germinated at the high temperature if they had completed the lag phase to a sufficient extent at the low temperature. This shows that the processes during the lag phase were inhibited by the high temperature while the onset of growth was not affected.

  相似文献   

17.
Seeds with a water‐impermeable seed coat and a physiologically dormant embryo are classified as having combinational dormancy. Seeds of Sicyos angulatus (burcucumber) have been clearly shown to have a water‐impermeable seed coat (physical dormancy [PY]). The primary aim of the present study was to confirm (or not) that physiological dormancy (PD) is also present in seeds of S. angulatus. The highest germination of scarified fresh (38%) and 3‐month dry‐stored (36%) seeds occurred at 35/20°C. The rate (speed) of germination was faster in scarified dry‐stored seeds than in scarified fresh seeds. Removal of the seed coat, but leaving the membrane surrounding the embryo intact, increased germination of both fresh and dry‐stored seeds to > 85% at 35/20°C. Germination (80–100%) of excised embryos (both seed coat and membrane removed) occurred at 15/6, 25/15 and 35/20°C and reached 95–100% after 4 days of incubation at 25/15 and 35/20°C. Dry storage (after‐ripening) caused an increase in the germination percentage of scarified and of decoated seeds at 25/15°C and in both germination percentage and rate of excised embryos at 15/6°C. Eight weeks of cold stratification resulted in a significant increase in the germination of scarified seeds at 25/15 and 35/20°C and of decoated seeds at 15/6 and 25/15°C. Based on the results of our study and on information reported in the literature, we conclude that seeds of S. angulatus not only have PY, but also non‐deep PD, that is, combinational dormancy (PY + PD).  相似文献   

18.
Emmenanthe penduliflora is an obligate fire-recruiter and demonstrates a prolonged seed dormancy followed by germination closely cued to the immediate post-fire environment. This study investigated, at the ultrastructure level, the causal factor(s) associated with seed dormancy and the stimulation of germination after exposure to smoke. The seed coat was responsible for the proximal regulation of dormancy - a waxy cuticular layer situated between the testa and endosperm was the primary barrier to the diffusion of water and small diameter solutes. The sub-testa cuticle in dormant seeds was partially permeable, as indicated by the presence of permeate channels. A short exposure to dry smoke (3 min) promoted a significant increase in seed germination (dormant 80.3% smoke-treated 793%). Exposure to smoke also resulted in two major changes to the morphology of the seed. First, smoke treatment produced an intense chemical scarification at the seed surface; the external cuticle was plasticized to form numerous small spheres on the seed surface. Second, smoke significantly altered the permeability of the internal (sub-testa) cuticle. A significant increase in both the number and size of permeate channels in the sub-testa cuticle indicated that these modifications were directly associated with the breaking of seed dormancy. The observed changes at both the internal (sub-testa) and external cuticles are consistent with the hypothesis that volatiles in smoke exert a surfactant-like reaction to break seed dormancy in E. penduliflora.  相似文献   

19.
The relationship between seed phenolics and appearance of seed coat–imposed dormancy during seed development in Cynoglossum officinale L. was studied. Up to 24 days after anthesis, seeds failed to germinate upon imbibition in Petri dishes at 25°C. At 44 days after anthesis, seeds were fully germinable; removal of seed coats did not improve their germination or O2 uptake. At 72 days after anthesis, mature seeds at the base of the cyme did not germinate unless their coats were removed. Removal of seed coat also stimulated O2 uptake at this harvest date. The methanol-soluble phenolic content of the seeds increased during the early stages of seed development, in both the seed coat and the embryo. As seed development continued, the methanol-soluble phenolic content of the embryo stabilized, but that of the seed coat declined. This decline was associated with an increase in the thioglycolic acid–soluble phenolics, presumably lignins, in the seed coat. These results suggest that polymerization of methanol–soluble phenolics into lignins in the seed coat during later stages of seed development renders the seed coat of C. officinale impermeable to 03, and thus keeps the seed dormant.  相似文献   

20.
Ethylene in seed dormancy and germination   总被引:17,自引:0,他引:17  
The role of ethylene in the release of primary and secondary dormancy and the germination of non-dormant seeds under normal and stressed conditions is considered. In many species, exogenous ethylene, or ethephon – an ethylene-releasing compound - stimulates seed germination that may be inhibited because of embryo or coat dormancy, adverse environmental conditions or inhibitors (e.g. abscisic acid, jasmonate). Ethylene can either act alone, or synergistically or additively with other factors. The immediate precursor of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC), may also improve seed germination, but usually less effectively. Dormant or non-dormant inhibited seeds have a lower ethylene production ability, and ACC and ACC oxidase activity than non-dormant, uninhibited seeds. Aminoethoxyvinyl-glycine (AVG) partially or markedly inhibits ethylene biosynthesis in dormant or non-dormant seeds, but does not affect seed germination. Ethylene binding is required in seeds of many species for dormancy release or germination under optimal or adverse conditions. There are examples where induction of seed germination by some stimulators requires ethylene action. However, the mechanism of ethylene action is almost unknown.
The evidence presented here shows that ethylene performs a relatively vital role in dormancy release and seed germination of most plant species studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号