首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
生长素信号转导研究进展   总被引:11,自引:0,他引:11  
长素的信号转导是一个复杂的网络系统,在信号的感知上,除了存在ABPI介导的膜上感知途径外,还有其他的感知途径。G蛋白参与诱导生长素信号的胞内传递,生长素信号转导的第二信使包括离子型第二信使、磷酯酶A2、脂活化蛋白激酶、MAPK和PINOIND等。AUX/IAA蛋白的泛素化降解在生长素反应中发挥关键性作用,ARF和AUX/IAA蛋白相互作用调节生长素响应基因的转录。  相似文献   

2.
施怡婷 《植物学报》2016,51(3):287-289
乙烯是一种气态植物激素,在植物生长发育的各个阶段发挥着非常重要的作用。最近,中国科学家在乙烯信号转导的分子机制研究中取得了突破性进展。  相似文献   

3.
植物生长素反应因子研究进展   总被引:2,自引:0,他引:2  
生长素反应因子(ARFs)是植物生长和发育的重要调节因子,在生长素早期反应蛋白(Aux/IAAs)的参与下,通过和生长素反应基因启动子区AuxRE元件的JTGTCTC序列结合,共同调控这些基因的表达。近年来关于生长素反应因子的分子结构和ARF与Aux/IAA的相互作用及其对植物生长和发育的影响、作用的靶基因以及分子机制受到人们的重视,并在这些方面做了大量的研究。  相似文献   

4.
TIR1终于被确证为生长素受体   总被引:1,自引:0,他引:1  
生长素受体-TIR1近期被确定,解决了生长素研究中长期令人困惑的一大难题。生长素首先和TIR1结合并且促进TIR1和Aux/IAA蛋白质的相互作用。TIR1和其他至少3种F-box蛋白质一起发挥作用,激活了泛素化的蛋白质降解过程,启动了基因转录,从而导致了植物生长发育过程中的生长素反应。  相似文献   

5.
生长素受体与信号转导机制研究进展   总被引:7,自引:2,他引:7  
对生长素受体ABP1和TIR1及调控泛素化蛋白降解的生长素信号转导途径研究进展进行综述。  相似文献   

6.
生长素信号转导途径及参与的生物学功能研究进展   总被引:4,自引:0,他引:4  
张娟 《生命科学研究》2009,13(3):272-277
生长素参与植物生长和发育诸多过程,调控众多生理反应,在植物整个生命周期中自始至终发挥着调节作用.研究生长素的作用机制,对深入认识植物生长发育的生理过程有着重要的意义.综述了与生长素信号转导途径相关的3类主要蛋白组分:生长素/吲哚乙酸蛋白(auxin/indoleacetic acids proteins,Aux/IAAs)、生长素响应因子(auxin response factors,ARFs)和SCF(SKP1-CDC53/CUL1-F-box)复合体,及相关的SGT1(suppressor of the G2 allele of skp1)基因,并对生长素相关基因表达的模式及其生物学功能进行了总结.  相似文献   

7.
贾利霞  齐艳华 《植物学报》2022,57(3):263-275
水稻(Oryza sativa)是世界主要粮食作物。随着我国经济飞速发展, 耕地面积逐年减少, 提高水稻总产量唯有依靠单产的增加。粒重是决定水稻产量的重要因素之一, 其遗传稳定, 受外界环境因素影响较小。粒重由粒型和灌浆程度决定, 而粒型性状包括粒长、粒宽、粒厚和长宽比。水稻种子颖壳和胚乳发育决定了粒型和粒重, 颖壳细胞的增殖和扩张限制籽粒发育, 胚乳占据成熟种子的大部分体积。而生长素调控受精后颖壳和胚乳的发育, 是调控种子发育和影响水稻产量的重要植物激素。生长素的时空分布受生长素代谢、运输和信号转导的动态调节, 以维持生长素在种子发育中的最适水平。该文综述了生长素代谢、运输和信号转导调控水稻粒型的研究进展, 以期为深入探究生长素调控水稻粒型发育机制和提高水稻产量提供线索。  相似文献   

8.
早期生长素响应蛋白在生长素信号转导中的作用   总被引:3,自引:1,他引:2  
3种早期生长素响应蛋白--生长素/吲哚乙酸蛋白(Aux/IAAs)、生长素响应因子(ARFs)和泛素介导的蛋白降解途径组分在生长素的信号转导中起着关键性的作用.目前的研究结果支持负调控模型的说法,即Aux/IAAs蛋白以生长素依赖的方式通过泛素相关的蛋白降解机制为26S蛋白酶降解.当Aux/IAAs-Aux/IAAs以及Aux/IAAs-ARFs二聚体含量降低时,ARFs-ARFs水平升高,ARFs-ARFs结合在生长素调控基因启动子的生长素响应元件(AuxREs)上调节一系列基因的表达,进而引导植物的正常生长和发育.  相似文献   

9.
生长素是最重要的植物激素之一,对植物生长发育起着关键调控作用。生长素作用于植物后,早期生长素响应基因家族Aux/IAA、GH3和SAUR等被迅速诱导,基因表达上调。其中Aux/IAA基因家族编码的蛋白一般由4个保守结构域组成,结构域Ⅰ具有抑制生长素信号下游基因表达的作用,结构域Ⅱ在生长素信号转导中主要被TIR1调控进而影响Aux/IAA的稳定性,结构域Ⅲ/Ⅳ通过与生长素响应因子ARF相互作用调控生长素信号。Aux/IAA基因家族在双子叶植物拟南芥(Arabidopsis thaliana)的器官发育、根形成、茎伸长和叶扩张等方面发挥重要作用;在单子叶植物水稻(Oryza sativa)和小麦(Triticum aestivum)中,主要影响根系发育和株型,但大多数Aux/IAA基因的功能尚不清楚。该文主要从Aux/IAA蛋白的结构、功能和生长素信号转导途径方面综述Aux/IAA家族在拟南芥、禾谷类作物及其它植物中的研究进展,以期为全面揭示Aux/IAA家族基因的生物学功能提供线索。  相似文献   

10.
生长素的运输及其在信号转导及植物发育中的作用   总被引:2,自引:0,他引:2  
生长素作为一种重要的植物激素,参与调节植物生长发育的诸多过程,如器官发生、形态建成、向性反应、顶端优势及组织分化等,其作用机理长期以来备受人们关注。生长素的极性运输能使生长素积累在植物体某些特定部位,从而形成生长素浓度梯度,生长素对植物生长发育的调节主要依赖于这一特性。系统阐述生长素的运输特点、运输机理和相关生长素极性运输载体的研究进展;并对生长素信号转导途径中的重要组分及其机理进行了总结;同时较系统地对生长素参与植物体各器官发育过程及调节情况进行综述。  相似文献   

11.
近年来,在植物激素的信号传导研究上已取得突破性进展.生长素的信号传导通路研究除了在生长素结合蛋白(ABP)上有所进展外,在生长素应答基因(Aux IAA),生长素调节因子(ARF)以及感应突变体的研究上也取得较大进展.对生长素运输通路及PIN1蛋白的功能和其抑制剂的研究也使对生长素信号传导的认识更清楚.生长素应答基因(Aux IAA)是生长素处理后快速诱导的基因.Aux IAA蛋白具有组织特异性(例如SAU蛋白)可以用来研究外源激素对植物生长发育的影响.生长素调节因子(ARF)与生长素应答基因的启动子序列具有特异性结合,Aux IAA蛋白与生长素调节因子(ARF)相互作用,并引发一系列蛋白质降解.使用转基因的拟南芥突变体,能有效地研究生长素在植物体内的特异性分布.借助运输载体抑制剂,可以对生长素的极性运输有更深入的了解.已经证明PIN蛋白参与生长素运输并与肌动蛋白有关.而且生长素参与了赤霉素介导的植物伸长反应.  相似文献   

12.
彭雄波  孙蒙祥 《植物学报》2016,51(2):145-147
阐明植物雄配子体与雌配子体互作的分子机理一直是植物有性生殖研究的前沿和热点。但限于研究难度较大, 很多重要科学问题仍有待回答。关于花粉管如何感知雌配子体信号从而定向生长进入胚囊以投送精细胞就是悬疑多年的问题之一。最近, 中国科学家在解析雄配子体感知雌配子体引导信号的分子机制方面取得了突破性进展。  相似文献   

13.
左建儒  陈凡 《植物学报》2015,50(2):145-148
植物具有复杂而精巧的机制以适应各种逆境。最近, 中国科学家在水稻(Oryza sativa)感受冷信号的分子机理、冷信号感应分子在水稻驯化过程中的演化及拟南芥(Arabidopsis thaliana)中磷酸化调控冷信号转导的分子机理等研究中取得了突破性进展。  相似文献   

14.
长期的研究表明,生长素在调节植物生长发育的各种生理活动中起关键作用,但对它如何调控这些生理活动却缺乏系统和深入的了解。最近,细胞核内生长素信号途径的发现为揭示其作用机制带来了曙光。乙烯参与果实成熟及植物对逆境的反应等生理活动,其信号途径也已得到部分阐明。越来越多的证据表明,乙烯的作用与生长素对植物生长发育的调控之间有密切的联系。该文概述了生长素与乙烯信号途径的研究进展及其相互关系,讨论了生长素在植物三重反应中的作用;并对生长素与乙烯相互关系研究中存在的问题及研究前景进行了探讨。  相似文献   

15.
植物体需要构建复杂的信号转导体系以调节自身的生长发育过程并适应外界环境的变化,这种功能的实现需要胞内和胞外诸多信号分子的参与,胞外钙调素的发现使人们开始相信植物细胞外多肽信使的存在。胞外钙调素的生物学功能极其广泛,几乎涉及到植物生长发育的各个阶段,其信号转导途径是目前研究得最多也是最为清楚的方面,异三聚体G蛋白、磷脂酶C(PLC)-肌醇三磷酸(IP3)-肌醇三磷酸受体(IP3R)信号通路、活性氧和Ca2 通道之间直接或间接的相互作用是胞外钙调素信号转导的核心。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号