首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have identified specific GABAergic‐modulated behaviors in the juvenile stage of the fruit fly, Drosophila melanogaster via systemic treatment of second instar larvae with the potent GABA transport inhibitor DL‐2,4‐diaminobutyric acid (DABA). DABA significantly inhibited motor‐controlled body wall and mouth hook contractions and impaired rollover activity and contractile responses to touch stimulation. The perturbations in locomotion and rollover activity were reminiscent of corresponding DABA‐induced deficits in locomotion and the righting reflex observed in adult flies. The effects were specific to these motor‐controlled behaviors, because DABA‐treated larvae responded normally in olfaction and phototaxis assays. Recovery of these behaviors was achieved by cotreatment with the vertebrate GABAA receptor antagonist picrotoxin. Pharmacological studies performed in vitro with plasma membrane vesicles isolated from second instar larval tissues verified the presence of high‐affinity, saturable GABA uptake mechanisms. GABA uptake was also detected in plasma membrane vesicles isolated from behaviorally quiescent stages. Competitive inhibition studies of [3H]‐GABA uptake into plasma membrane vesicles from larval and pupal tissues with either unlabeled GABA or the transport inhibitors DABA, nipecotic acid, or valproic acid, revealed differences in affinities. GABAergic‐modulation of motor behaviors is thus conserved between the larval and adult stages of Drosophila, as well as in mammals and other vertebrate species. The pharmacological studies reveal shared conservation of GABA transport mechanisms between Drosophila and mammals, and implicate the involvement of GABA and GABA transporters in regulating physiological processes distinct from neurotransmission during behaviorally quiescent stages of development. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

2.
We have identified several GABAergic-modulated behaviors in Drosophila melanogaster by employing a pharmacological approach to disrupt GABA transporter function in vivo. Systemic treatment of adult female flies with the GABA transport inhibitors DL-2,4-diaminobutyric acid (DABA) or R,S-nipecotic acid (NipA), resulted in diminished locomotor activity, deficits in geotaxis, and the induction of convulsive behaviors with a secondary loss of the righting reflex. Pharmacological evidence suggested that the observed behavioral phenotypes were specific to disruption of GABA transporter function and GABAergic activity. The effects of GABA reuptake inhibitors on locomotor activity were dose dependent, pharmacologically distinct, and paralleled their known effects in mammalian systems. Recovery of normal locomotor activity and the righting reflex in DABA- and NipA-treated flies was achieved by coadministration of bicuculline (BIC), a GABA receptor antagonist that supresses GABAergic activity in mammals. Recovery of these behaviors was also achieved by coadministration of gabapentin, an anticonvulsant agent that interacts with mammalian GABAergic systems. Finally, behavioral effects were selective because other specific behaviors such as feeding activity and female sexual receptivity were not affected. Related pharmacological analyses performed in vitro on isolated Drosophila synaptic plasma membrane vesicles demonstrated high affinity, saturable uptake mechanisms for [3H]-GABA; further competitive inhibition studies with DABA and NipA demonstrated their ability to inhibit [3H]-GABA transport. The existence of experimentally accessible GABA transporters in Drosophila that share conserved pharmacological properties with their mammalian counterparts has resulted in the identification of specific behaviors that are modulated by GABA.  相似文献   

3.
Gamma‐aminobutyric acid (GABA) is a non‐protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA‐transaminase, GABA‐T), we attempted seed‐specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB‐1) or rice embryo globulin promoters (REG) and GABA‐T‐based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T1 and T2 generations of rice lines displayed high GABA concentrations (2–100 mg/100 g grain). In analyses of two selected lines from the T3 generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA‐T expression was relatively weak. In these two lines both with two T‐DNA copies, their starch, amylose, and protein levels were slightly lower than non‐transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75–350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts.  相似文献   

4.
5.
Drosophila melanogaster Meigen mutants for N‐β‐alanyldopamine (NBAD) metabolism have altered levels of NBAD, dopamine and other neurotransmitters. The ebony1 mutant strain has very low levels of NBAD and higher levels of dopamine, whereas the opposite situation is observed in the tan1 mutant. Dopamine is implicated in the control of movement, memory and arousal, as well as in the regulation of sleep and wakefulness in D. melanogaster. N‐β‐alanyldopamine, which is best known as a cuticle cross‐linking agent, is also present in nervous tissue and has been proposed to promote locomotor activity in this fly. The daily locomotor activity and the sleep patterns of ebony1 and tan1 mutants are analyzed, and are compared with wild‐type flies. The tan1 mutant shows reduced locomotor activity, whereas ebony1 shows higher levels of activity than wild‐type flies, suggesting that NBAD does not promote locomotor activity. Both mutants spend less time asleep than wild‐type flies during night‐time; ebony shows more consolidated activity during night‐time and increased sleep latency, whereas tan is unable to consolidate locomotor activity and sleep in either phase of the day. The daily level of NBAD‐synthase activity is measured in vitro using wild‐type and tan1 protein extracts, and the lowest NBAD synthesis is observed at the time of higher locomotor activity. The abnormalities in several parameters of the waking/sleep cycle indicate some dysfunction in the processes that regulates these behaviours in both mutants.  相似文献   

6.
Paclitaxel is a chemotherapeutic agent widely used for treating carcinomas. Patients receiving paclitaxel often develop neuropathic pain and have a reduced quality of life which hinders the use of this life‐saving drug. In this study, we determined the role of GABA transporters in the genesis of paclitaxel‐induced neuropathic pain using behavioral tests, electrophysiology, and biochemical techniques. We found that tonic GABA receptor activities in the spinal dorsal horn were reduced in rats with neuropathic pain induced by paclitaxel. In normal controls, tonic GABA receptor activities were mainly controlled by the GABA transporter GAT‐1 but not GAT‐3. In the spinal dorsal horn, GAT‐1 was expressed at presynaptic terminals and astrocytes while GAT‐3 was only expressed in astrocytes. In rats with paclitaxel‐induced neuropathic pain, the protein expression of GAT‐1 was increased while GAT‐3 was decreased. This was concurrently associated with an increase in global GABA uptake. The paclitaxel‐induced attenuation of GABAergic tonic inhibition was ameliorated by blocking GAT‐1 but not GAT‐3 transporters. Paclitaxel‐induced neuropathic pain was significantly attenuated by the intrathecal injection of a GAT‐1 inhibitor. These findings suggest that targeting GAT‐1 transporters for reversing disinhibition in the spinal dorsal horn may be a useful approach for treating paclitaxel‐induced neuropathic pain.

  相似文献   


7.
In plants, γ-aminobutyric acid (GABA) accumulates in the cytosol in response to a variety of stresses. GABA is transported into mitochondria, where it is catabolized into TCA cycle or other intermediates. Although there is circumstantial evidence for mitochondrial GABA transporters in eukaryotes, none have yet been identified. Described here is an Arabidopsis protein similar in sequence and topology to unicellular GABA transporters. The expression of this protein complements a GABA-transport-deficient yeast mutant. Thus the protein was termed AtGABP to indicate GABA-permease activity. In vivo localization of GABP fused to GFP and immunobloting of subcellular fractions demonstrate its mitochondrial localization. Direct [(3) H]GABA uptake measurements into isolated mitochondria revealed impaired uptake into mitochondria of a gabp mutant compared with wild-type (WT) mitochondria, implicating AtGABP as a major mitochondrial GABA carrier. Measurements of CO(2) release, derived from radiolabeled substrates in whole seedlings and in isolated mitochondria, demonstrate impaired GABA-derived input into the TCA cycle, and a compensatory increase in TCA cycle activity in gabp mutants. Finally, growth abnormalities of gabp mutants under limited carbon availability on artificial media, and in soil under low light intensity, combined with their metabolite profiles, suggest an important role for AtGABP in primary carbon metabolism and plant growth. Thus, AtGABP-mediated transport of GABA from the cytosol into mitochondria is important to ensure proper GABA-mediated respiration and carbon metabolism. This function is particularly essential for plant growth under conditions of limited carbon.  相似文献   

8.
9.
Glycogen synthase kinase 3β (GSK3β), which is abundantly present in the brain, is known to contribute to psychomotor stimulant‐induced locomotor behaviors. However, most studies have been focused in showing that GSK3β is able to attenuate psychomotor stimulants‐induced hyperactivity by increasing its phosphorylation levels in the nucleus accumbens (NAcc). So, here we examined in the opposite direction about the effects of decreased phosphorylation of GSK3β in the NAcc core on both basal and cocaine‐induced locomotor activity by a bilateral microinjection into this site of an artificially synthesized peptide, S9 (0.5 or 5.0 μg/μL), which contains sequences around N‐terminal serine 9 residue of GSK3β. We found that decreased levels of GSK3β phosphorylation in the NAcc core enhance cocaine‐induced hyper‐locomotor activity, while leaving basal locomotor activity unchanged. This is the first demonstration, to our knowledge, that the selective decrease of GSK3β phosphorylation levels in the NAcc core may contribute positively to cocaine‐induced locomotor activity, while this is not sufficient for the generation of locomotor behavior by itself without cocaine. Taken together, these findings importantly suggest that GSK3β may need other molecular targets which are co‐activated (or deactivated) by psychomotor stimulants like cocaine to contribute to generation of locomotor behaviors.  相似文献   

10.
Local conformation and overall conformation of poly(γ‐DL‐glutamic acid) (PγDLGA) and poly(γ‐L‐glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by 1H‐NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random‐coil in a range of ε > ε*, where ε* is about 0.3, 0.35, 0.45, and 0.5 for added‐salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε*, however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random‐coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 191–198, 2016.  相似文献   

11.
The nuclear receptor βFTZ‐F1 is expressed in most cells in a temporally specific manner, and its expression is induced immediately after decline in ecdysteroid levels. This factor plays important roles during embryogenesis, larval ecdysis, and early metamorphic stages. However, little is known about the expression pattern, regulation and function of this receptor during the pupal stage. We analyzed the expression pattern and regulation of ftz‐f1 during the pupal period, as well as the phenotypes of RNAi knockdown or mutant animals, to elucidate its function during this stage. Western blotting revealed that βFTZ‐F1 is expressed at a high level during the late pupal stage, and this expression is dependent on decreasing ecdysteroid levels. By immunohistological analysis of the late pupal stage, FTZ‐F1 was detected in the nuclei of most cells, but cytoplasmic localization was observed only in the oogonia and follicle cells of the ovary. Both the ftz‐f1 genetic mutant and temporally specific ftz‐f1 knockdown using RNAi during the pupal stage showed defects in eclosion and in the eye, the antennal segment, the wing and the leg, including bristle color and sclerosis. These results suggest that βFTZ‐F1 is expressed in most cells at the late pupal stage, under the control of ecdysteroids and plays important roles during pupal development.  相似文献   

12.
Aquaporin‐4 (AQP4), the main water‐selective membrane transport protein in the brain, is localized to the astrocyte plasma membrane. Following the establishment of a 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced Parkinson's disease (PD) model, AQP4‐deficient (AQP4?/?) mice displayed significantly stronger microglial inflammatory responses and remarkably greater losses of tyrosine hydroxylase (TH+)‐positive neurons than did wild‐type AQP4 (AQP4+/+) controls. Microglia are the most important immune cells that mediate immune inflammation in PD. However, recently, few studies have reported why AQP4 deficiency results in more severe hypermicrogliosis and neuronal damage after MPTP treatment. In this study, transforming growth factor‐β1 (TGF‐β1), a key suppressive cytokine in PD onset and development, failed to increase in the midbrain and peripheral blood of AQP4?/? mice after MPTP treatment. Furthermore, the lower level of TGF‐β1 in AQP4?/? mice partially resulted from impairment of its generation by astrocytes; reduced TGF‐β1 may partially contribute to the uncontrolled microglial inflammatory responses and subsequent severe loss of TH+ neurons in AQP4?/? mice after MPTP treatment. Our study provides not only a better understanding of both aetiological and pathogenical factors implicated in the neurodegenerative mechanism of PD but also a possible approach to developing new treatments for PD via intervention in AQP4‐mediated immune regulation.  相似文献   

13.
Vascular calcification is a frequent complication of atherosclerosis, diabetes and chronic kidney disease. In the latter group of patients, calcification is commonly seen in tunica media where smooth muscle cells (SMC) undergo osteoblastic transformation. Risk factors such as elevated phosphorus levels and vitamin D3 analogues have been identified. In the light of earlier observations by our group and others, we sought to inhibit SMC calcification via induction of ferritin. Human aortic SMC were cultured using β‐glycerophosphate with activated vitamin D3, or inorganic phosphate with calcium, and induction of alkaline phosphatase (ALP) and osteocalcin as well as accumulation of calcium were used to monitor osteoblastic transformation. In addition, to examine the role of vitamin D3 analogues, plasma samples from patients on haemodialysis who had received calcitriol or paricalcitol were tested for their tendency to induce calcification of SMC. Addition of exogenous ferritin mitigates the transformation of SMC into osteoblast‐like cells. Importantly, pharmacological induction of heavy chain ferritin by 3H‐1,2‐Dithiole‐3‐thione was able to inhibit the SMC transition into osteoblast‐like cells and calcification of extracellular matrix. Plasma samples collected from patients after the administration of activated vitamin D3 caused significantly increased ALP activity in SMC compared to the samples drawn prior to activated vitamin D3 and here, again induction of ferritin diminished the osteoblastic transformation. Our data suggests that pharmacological induction of ferritin prevents osteoblastic transformation of SMC. Hence, utilization of such agents that will cause enhanced ferritin synthesis may have important clinical applications in prevention of vascular calcification.  相似文献   

14.
On the basis of the evidence that the excitability of hippocampal glutamatergic neurotransmitter system is enhanced by dietary zinc deficiency, the response of amygdalar neurotransmitter system was checked in young rats fed a zinc-deficient diet for 4 weeks. Extracellular zinc concentration in the amygdala, which was measured by the in vivo microdialysis, was almost the same as that in the hippocampus and decreased by zinc deficiency. Extracellular zinc concentration in the amygdala was increased both in the control and zinc-deficient rats by stimulation with 100 mM KCl, suggesting that the increase in extracellular zinc in the amygdala, as well as that in the hippocampus, is linked with neuronal depolarization. In amygdalar extracellular fluid, the basal glutamate concentration was not significantly different between the control and zinc-deficient rats and was increased to almost the same extent between them by stimulation with 100 mM KCl, unlike more increase in extracellular glutamate concentration in the hippocampus in zinc deficiency. On the other hand, the basal GABA concentration in the amygdalar extracellular fluid was significantly lower in zinc-deficient rats and was not increased both in the control and zinc-deficient rats by stimulation with 100 mM KCl. These results suggest that GABAergic neurotransmitter system is critically impaired in the amygdala of young rats after 4-week zinc deprivation.  相似文献   

15.
The subventricular zone (SVZ) is a proliferative region that provides neurons to olfactory bulb throughout life. The new neurons undergo cell migration from SVZ and travel until they reach their final destination. We previously showed in the early postnatal mouse a ventral migratory subpopulation from SVZ targets the Islands of Calleja (ICC) in the basal forebrain. However, unlike the well‐characterized rostral migratory stream, little is known about the guidance mechanisms operating in the ventrally directed migratory pathway. In this study, we examined the role of neurotransmitter γ‐aminobutyric acid (GABA) in SVZ‐derived progenitor ventral migration and the involvement of this neurotransmitter in the cytoarchitectual organization of dispersed cells into the tight clusters of the ICC. Our results show that the ventral SVZ cell migration rate was enhanced by GABA acting through a GABAA receptor and that GABA acts as a directional guidance cue for ventral migrating cells. Furthermore, disruption of GABA signaling inhibited the formation of Island clusters in vitro. Taken together, these data suggest that GABA is an important guidance and organizational cue for the Island of Calleja. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 791–804, 2015  相似文献   

16.
17.
Intracellular free amino acid pools were quantified in suspension cultured cells of a blast‐sensitive and a blast‐resistant rice genotype at increasing times after treatment with Magnaporthe oryzae cell wall hydrolysates. Besides some expected variations in free phenylalanine, a remarkable early increase of γ‐aminobutyric acid (GABA) levels was evident in both cultivars. Glutamate decarboxylase activity and protein levels were unaffected. GABA homeostasis was recovered in the sensitive cultivar 48 h after the treatment. In contrast, a further GABA accumulation and a general increase of most amino acids was found at this later stage in the resistant genotype, which showed a larger decrease in cell viability as a consequence of elicitor addition. Data support a recently hypothesised role of GABA metabolism in the plant response to fungal pathogens.  相似文献   

18.
Inflammatory bowel disease is a kind of multi‐aetiological chronic disease that is driven by multidimensional factors. Hypoxia‐inducible factor‐1α (HIF‐1α) plays an important role in anti‐inflammatory and cellular responses to hypoxia. Previous studies have found that B or T‐cell‐specific HIF‐1α knock out mice exhibit severe colonic inflammation. However, we know very little about other functions of HIF‐1α in intestinal epithelial cells (IECs). In our study, HIF‐1αΔIEC mice were used to study the function of HIF‐1α in IECs. HIF‐1α was knocked down in Caco‐2 cells by transfection with a small interfering (si) RNA. Immunohistochemical staining and western blotting were used to detect the expression of zonula occluden‐1 (ZO‐1) and Occludin. The content of colon was harvested for high‐performance liquid chromatography analysis to examine the levels of butyrate in the gut. Our research found that HIF‐1α played a protective role in dextran sulphate sodium‐induced colitis, which was partly due to its regulation of tight junction (TJ) protein expression. Further study revealed that HIF‐1α mediated TJ proteins levels by moderating the content of butyrate. Moreover, we found that butyrate regulated TJ protein expression, which is dependent on HIF‐1α. These results indicated that there is a mutual regulatory mechanism between butyrate and HIF‐1α, which has an important role in the maintenance of barrier function of the gastrointestinal tract.  相似文献   

19.
Plants developed under high (90%) relative air humidity (RH) have previously been shown to have large, malfunctioning stomata, which results in high water loss during desiccation and reduced dark induced closure. Stomatal movement is to a large extent regulated by abscisic acid (ABA). It has therefore been proposed that low ABA levels contribute to the development of malfunctioning stomata. In this study, we investigated the regulation of ABA content in rose leaves, through hormone analysis and β‐glucosidase quantification. Compared with high RH, rose plants developed in moderate RH (60%) and 20 h photoperiod contained higher levels of ABA and β‐glucosidase activity. Also, the amount of ABA increased during darkness simultaneously as the ABA‐glucose ester (GE) levels decreased. In contrast, plants developed under high RH with 20 h photoperiod showed no increase in ABA levels during darkness, and had low β‐glucosidase activity converting ABA‐GE to ABA. Continuous lighting (24 h) resulted in low levels of β‐glucosidase activity irrespective of RH, indicating that a dark period is essential to activate β‐glucosidase. Our results provide new insight into the regulation of ABA under different humidities and photoperiods, and clearly show that β‐glucosidase is a key enzyme regulating the ABA pool in rose plants.  相似文献   

20.
Poly‐γ‐glutamate (γ‐PGA) has applications in food, medical, cosmetic, animal feed, and wastewater industries. Bacillus subtilis DB430, which possesses the γ‐PGA synthesis ywsC‐ywtAB genes in its chromosome, cannot produce γ‐PGA. An efficient synthetic expression control sequence (SECS) was introduced into the upstream region of the ywtABC genes, and this resulted in γ‐PGA‐producing B. subtilis mutant strains. Mutant B. subtilis PGA6‐2 stably produces high levels of γ‐PGA in medium A without supplementation of extra glutamic acid or ammonium chloride. The mutant B. subtilis PGA 6‐2 is not only a γ‐PGA producer, but it is also a candidate for the genetic and metabolic engineering of γ‐PGA production. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号