首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The locus coeruleus (LC) is a major target of several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. However, very little is known of the trophic requirements of LC neurons. In the present work, we have studied the biological activity of neurotrophic factors from different families in E15 primary cultures of LC neurons. In agreement with previous results, neurotrophin-3 (NT-3) and also glial cell line- derived neurotrophic factor (GDNF) increased the number of embryonic LC noradrenergic neurons in the presence of serum. In serum-free conditions, none of the factors tested, including NT-3, GDNF, neurturin, basic fibroblast growth factor (bFGF), or bone morphogenetic protein-2 (BMP-2), promoted the survival of tyrosine hydroxylase (TH)-immunoreactive neurons at 6 days in vitro. However, when BMP-2 was coadministered with any of these factors the number of LC TH-positive neurons increased twofold. Similar results were obtained by cotreatment of LC neurons with forskolin and NT-3, bFGF, or BMP-2. The strongest effect (a fourfold increase in the number of TH-positive cells) was induced by cotreatment with forskolin, BMP-2, and GDNF. Thus, our results show that LC neurons require multiple factors for their survival and development, and suggest that activation of LC neurons by bone morphogenetic proteins and cAMP plays a decisive role in conferring noradrenergic neuron responsiveness to several trophic factors.  相似文献   

2.
The role of glial cell-line derived neurotrophic factor (GDNF) and neurotrophins in the development of locus coeruleus noradrenergic neurons was evaluated. We found that two neurotrophic factors previously reported to prevent the degeneration of lesioned adult central noradrenergic neurons, GDNF and neurotrophin 3 (NT3), do not play significant roles in the prenatal development of locus coeruleus noradrenergic neurons, as demonstrated by: (1) the lack of alterations in double Gdnf/Nt3 null mutant mice; and (2) the lack of survival-promoting effects of GDNF and/or NT3 in rat E13.5 primary cultures. In contrast, null mutant mice for TrkB, the tyrosine kinase receptor for brain-derived neurotrophic factor and neurotrophin 4, displayed a clear loss of locus coeruleus noradrenergic neurons. In accordance with this, treatment of rat E13.5 primary cultures with TrkB ligands prevented the early loss of noradrenergic neurons and maintained their survival for up to 6 days in vitro. Moreover, an additional 5-10-fold increase in the number of tyrosine hydroxylase positive noradrenergic neurons was detected after 12 hours in culture. This second effect of TrkB ligands involved neither proliferation nor survival, because the number of BrdU- or TUNEL-positive noradrenergic neurons did not change and the effect was elicited by delayed administration of either factor. Because TrkB ligands increased the number of tyrosine hydroxylase-positive cells expressing Phox2a, a paired homeodomain protein required for the development of locus coeruleus noradrenergic neurons, but did not affect the number of Phox2a-positive tyrosine hydroxylase-negative cells, our results suggest that the second effect of TrkB ligands may involve promoting or inducing a noradrenergic phenotype. In summary, our findings suggest that, unlike NT3 and GDNF, TrkB ligands are required and sufficient to promote the development of central noradrenergic neurons.  相似文献   

3.
Neurotrophic factors support the development of motoneurons by several possible mechanisms. Neurotrophins may act as target‐derived factors or as afferent factors derived from the central nervous system (CNS) or sensory ganglia. We tested whether brain‐derived neurotrophic factor (BDNF), neurotrophin 3 (NT‐3), neurotrophin 4 (NT‐4), and glial cell line–derived neurotrophic factor (GDNF) may be target‐derived factors for neurons in the oculomotor (MIII) or trochlear (MIV) nucleus in chick embryos. Radio‐iodinated BDNF, NT‐3, NT‐4, and GDNF accumulated in oculomotor neurons via retrograde axonal transport when the trophic factors were applied to the target. Systemic GDNF rescued oculomotor neurons from developmental cell death, while BDNF and NT‐3 had no effect. BDNF enhanced neurite outgrowth from explants of MIII and MIV nuclei (identified by retrograde labeling in ovo with the fluorescent tracer DiI), while GDNF, NT‐3, and NT‐4 had no effect. The oculomotor neurons were immunoreactive for BDNF and the BDNF receptors p75NTR and trkB. To determine whether BDNF may be derived from its target or may act as an autocrine or paracrine factor, in situ hybridization and deprivation studies were performed. BDNF mRNA expression was detected in eye muscles, but not in CNS sources of afferent innervation to MIII, or the oculomotor complex itself. Injection of trkB fusion proteins in the eye muscle reduced BDNF immunoreactivity in the innervating motoneurons. These data indicate that BDNF trophic support for the oculomotor neurons was derived from their target. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 295–315, 1999  相似文献   

4.
The isthmo‐optic nucleus (ION) of chick embryos is a model system for the study of retrograde trophic signaling in developing CNS neurons. The role of brain‐derived neurotrophic factor (BDNF) is well established in this system. Recent work has implicated neurotrophin‐4 (NT‐4), glial cell line–derived neurotrophic factor (GDNF), and insulin‐like growth factor I (IGF‐I) as additional trophic factors for ION neurons. Here it was examined in vitro and in vivo whether these factors are target‐derived trophic factors for the ION in 13‐ to 16‐day‐old chick embryos. Unlike BDNF, neither GDNF, NT‐4, nor IGF‐I increased the survival of ION neurons in dissociated cultures identified by retrograde labeling with the fluorescent tracer DiI. BDNF and IGF‐I promoted neurite outgrowth from ION explants, whereas GDNF and NT‐4 had no effect. Injections of NT‐4, but not GDNF, in the retina decreased the survival of ION neurons and accelerated cell death in the ION. NT‐4–like immunoreactivity was present in the retina and the ION. Exogenous, radiolabeled NT‐4, but not GDNF or IGF‐I, was retrogradely transported from the retina to the ION. NT‐4 transport was significantly reduced by coinjection of excess cold nerve growth factor (NGF), indicating that the majority of NT‐4 bound to p75 neurotrophin receptors during axonal transport. Binding of NT‐4 to chick p75 receptors was confirmed in L‐cells, which express chick p75 receptors. These data indicate that GDNF has no direct trophic effects on ION neurons. IGF‐I may be an afferent trophic factor for the ION, and NT‐4 may act as an antagonist to BDNF, either by competing with BDNF for p75 and/or trkB binding or by signaling cell death via p75. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 289–303, 2000  相似文献   

5.
Noradrenergic neurons of the locus coeruleus (LC) express the receptor tyrosine kinase c-ret, which binds ligands of the glial cell line-derived neurotrophic factor (GDNF) family. In the present study, we evaluated the function of neurturin (NTN), a GDNF family ligand whose function on LC neurons is unknown. Interestingly, we found that tyrosine hydroxylase (TH)-positive neurons in the LC express both GFRalpha1 and 2 receptors in a developmentally regulated fashion, suggesting a function for their preferred ligands: GDNF and NTN, respectively. Moreover, our results show that NTN mRNA expression is developmentally down-regulated in the LC and peaks in the postnatal hippocampus and cerebral cortex, during the target innervation period. In order to examine the function of NTN, we next performed LC primary cultures, and found that neither GDNF nor NTN promoted the survival of TH-positive neurons. However, both factors efficiently induced neurite outgrowth in noradrenergic neurons (147% and 149% over controls, respectively). Similarly, grafting of fibroblast cell lines engineered to express high levels of NTN did not prevent the loss of LC noradrenergic neurons in a 6-hydroxydopamine (6-OHDA) lesion model, but induced the sprouting of TH-positive cells. Thus our findings show that NTN does not promote the survival of LC noradrenergic neurons, but induces neurite outgrowth in developing noradrenergic neurons in vitro and in a model of neurodegeneration in vivo. These data, combined with data in the literature, suggest that GDNF family ligands are able to independently regulate neuronal survival and/or neuritogenesis.  相似文献   

6.
Uninfected neurons of the substantia nigra (SN) degenerate in human immunodeficiency virus (HIV)‐positive patients through an unknown etiology. The HIV envelope glycoprotein 120 (gp120) causes apoptotic neuronal cell death in the rodent striatum, but its primary neurotoxic mechanism is still under investigation. Previous studies have shown that gp120 causes neurotoxicity in the rat striatum by reducing brain‐derived neurotrophic factor (BDNF). Because glial cell line‐derived neurotrophic factor (GDNF) and BDNF are neurotrophic factors crucial for the survival of dopaminergic neurons of the SN, we investigated whether gp120 reduces GDNF and BDNF levels concomitantly to induce apoptosis. Rats received a microinjection of gp120 or vehicle into the striatum and were sacrificed at various time intervals. GDNF but not BDNF immunoreactivity was decreased in the SN by 4 days in gp120‐treated rats. In these animals, a significant increase in the number of caspase‐3‐ positive neurons, both tyrosine hydroxylase (TH)‐positive and ‐negative, was observed. Analysis of TH immunoreactivity revealed fewer TH‐positive neurons and fibers in a medial and lateral portion of cell group A9 of the SN, an area that projects to the striatum, suggesting that gp120 induces retrograde degeneration of nigrostriatal neurons. We propose that dysfunction of the nigrostriatal dopaminergic system associated with HIV may be caused by a reduction of neurotrophic factor expression by gp120. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

7.
Adrenal chromaffin cells have been characterized by the ability to change the phenotype in response to neurotrophic factor stimulation. The adrenal gland expresses numerous trophic factors endogenously, but there is still a lack of knowledge as to how the adrenal medullary cells respond to these factors. Accordingly, we evaluated nerve fiber outgrowth and cell morphology, and measured catecholamine content in adult rat adrenal medullary tissue transplanted to the anterior chamber of the eye after exposure to neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5), basic fibroblast growth factor (bFGF), ciliary neurotrophic factor (CNTF), or glial cell line-derived neurotrophic factor (GDNF) compared with the effects after exposure to recombinant human nerve growth factor (rhNGF). The results show that rhNGF was the most potent factor in inducing neurite outgrowth from the grafted chromaffin cells. CNTF was also a powerful inducer of nerve fiber formation, while NT-4/5, GDNF, and bFGF were less potent. NT-3 did not produce neurite outgrowth above that seen in vehicle-treated eyes. Combining two neurotrophins, rhNGF and NT-3, reduced nerve fiber formation. Tyrosine hydroxylase (TH) immunohistochemistry revealed good cell survival in all grafts, and no morphological differences were detected with the different treatments. The adrenaline: noradrenaline: dopamine ratio was approximately 49%: 49%: 2%, independent of treatment, and the catecholamine content was equal irrespective of treatment. In conclusion, all neurotrophic factors used, except for NT-3, promoted neurite outgrowth from adult rat chromaffin transplants. Differences in outgrowth induced by the various trophic factors did not, however, change the catecholamine content in grafts when analyzed together with the graft-derived nerve plexus.  相似文献   

8.
Glial-cell-line-derived neurotrophic factor (GDNF) is a novel trophic factor with potent trophic effects on several neuron populations in the central and peripheral nervous system. In the present study, we have investigated and compared the potential of dopamine and metamphetamine with that of the two striatal neurotrophic factors, viz., GDNF and neurotrophin-(NT)-4/5, to regulate substance P and its preprotachykinin-A mRNA in organotypic striatal slices from postnatal (day 10) rats. Incubation for 2 weeks with 10 ng/ml GDNF significantly increased substance-P-like immunoreactivity determined by radioimmunoassay. Similarly, the corresponding preprotachykinin-A mRNA increased after 1 and 2 weeks of incubation, as analyzed by in situ hybridization. NT-4/5 exhibited similar effects.The dopamine-releasing agent metamphetamine stimulated substance-P-containing neurons in 1-week-old striatal slices, whereas dopamine stimulated substance-P-like immunoreactivity in 1- and 2-week old striatal cultures. The effects of dopamine and GDNF were not additive. We conclude that substance-P-containing medium-sized spiny neurons in the striatum are under both dopaminergic and growth factor control by GDNF and NT-4/5, which are both synthesized in the striatum. This adds a previously unknown role to those that have been established for GDNF in the nigrostriatal system. Received: 9 March 1996 / Accepted: 14 June 1996  相似文献   

9.
The development of enteric and sympathetic neurons from neural crest precursor cells is regulated by signals produced by the embryonic environments to which the cells migrate. Bone morphogenetic proteins (BMPs) are present in the developing embryo and act to induce neuronal differentiation and noradrenergic properties of neural crest cells. We have investigated the role of BMP2 in regulating the appearance of distinct populations of autonomic neurons from postmigratory, HNK-1-positive neural crest precursor cells. BMP2 promotes neuronal differentiation of sympathetic and enteric precursor cells isolated from E14.5 rat. The effects of BMP2 change over time, resulting in a decrease in neuron number that can be attributed to apoptotic cell death. BMP2-dependent neuron death is rescued by gut-derived factors that provide trophic support to maturing neurons, indicating that BMP2 regulates the acquisition of trophic dependence of developing peripheral neurons. In addition to regulating neuron number, BMP2 promotes both panneuronal maturation and the acquisition of an enteric phenotype, as measured by lineage-specific changes in the expression of tyrosine hydroxylase and MASH-1. While BMP2 is sufficient to induce neuronal differentiation and panneuronal development, these results suggest that additional factors in the environment must collaborate with BMP2 to promote the final noradrenergic phenotype of sympathetic neurons.  相似文献   

10.
In the developing embryo, axon growth and guidance depend on cues that include diffusible molecules. We have shown previously that the branchial arches and hepatocyte growth factor (HGF) are growth‐promoting and chemoattractant for young embryonic cranial motor axons. HGF is produced in the branchial arches of the embryo, but a number of lines of evidence suggest that HGF is unlikely to be the only factor involved in the growth and guidance of these axons. Here we investigate whether other neurotrophic factors could be involved in the growth of young cranial motor neurons in explant cultures. We find that brain‐derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and cardiotrophin‐1 (CT‐1) all promote the outgrowth of embryonic cranial motor neurons, while glial cell line‐derived neurotrophic factor (GDNF) and neurotrophin‐3 (NT‐3) fail to affect outgrowth. We next examined whether HGF and the branchial arches had similar effects on motor neuron subpopulations at different axial levels. Our results show that HGF acts as a generalized rather than a specific neurotrophic factor and guidance cue for cranial motor neurons. Although the branchial arches also had general growth‐promoting effects on all motor neuron subpopulations, they chemoattracted different axial levels differentially, with motor neurons from the caudal hindbrain showing the most striking response. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 101–114, 2002  相似文献   

11.
The loss of nigral dopaminergic (DA) neurons is the disease-defining pathological change responsible for progressive motor dysfunction in Parkinson’s disease. In this study, we sought to establish a culture method for adult rat tyrosine hydroxylase (TH)-immunoreactive DA neurons. In this context, we investigated the role of fibroblast growth factor 2 (FGF2), brain-derived neurotrophic factor (BDNF), transforming growth factor-β3 (TGF-β3), glial-derived neurotrophic factor (GDNF) and dibutyryl-cyclic AMP (dbcAMP) in these cultures. Culturing in the presence of FGF2, BDNF and GDNF enhanced the survival of DA neurons by 15-fold and promoted neurite growth. In contrast, dbcAMP promoted neurite growth in all neurons but did not enhance DA cell survival. This study demonstrates that long-term cultures of DA neurons can be established from the mature rat brain and that survival and regeneration of DA neurons can be manipulated by epigenetic factors such as growth factors and intracellular cAMP pathways.  相似文献   

12.
Cultures of embryonic rat septum were exposed for 24-48 h to 2-5 nm okadaic acid (OA), an inhibitor of pp1A and pp2A phosphatases. This stress killed approximately 75% of neurons. A neurotrophin (NT) combination (nerve growth factor and brain-derived neurotrophic factor, each 100 ng/mL) plus a bone morphogenetic protein (BMP6 or BMP7, 5 nm) reduced the death of both cholinergic and non-cholinergic neurons, and preserved choline acetyltransferase (ChAT) activity assayed 2-6 days post-stress. This NT + BMP combination preserved ChAT activity better than either NTs or BMPs alone, and was effective even if trophic factor addition was delayed until 12 h after stress onset. A general caspase inhibitor (qVD-OPH, 10 micro g/mL) also increased survival of stressed cholinergic neurons, but its protection of ChAT activity was shorter lived than that produced by the NT + BMP combination. Neither the NT + BMP combination nor the caspase inhibitor reduced the OA-induced increase in tau phosphorylation. These findings indicate that NTs and BMPs have synergistic protective effects against an OA stress, and suggest that at least some of these protective effects occur upstream of caspase activation.  相似文献   

13.
Uninfected neurons of the substantia nigra (SN) degenerate in human immunodeficiency virus (HIV)-positive patients through an unknown etiology. The HIV envelope glycoprotein 120 (gp120) causes apoptotic neuronal cell death in the rodent striatum, but its primary neurotoxic mechanism is still under investigation. Previous studies have shown that gp120 causes neurotoxicity in the rat striatum by reducing brain-derived neurotrophic factor (BDNF). Because glial cell line-derived neurotrophic factor (GDNF) and BDNF are neurotrophic factors crucial for the survival of dopaminergic neurons of the SN, we investigated whether gp120 reduces GDNF and BDNF levels concomitantly to induce apoptosis. Rats received a microinjection of gp120 or vehicle into the striatum and were sacrificed at various time intervals. GDNF but not BDNF immunoreactivity was decreased in the SN by 4 days in gp120-treated rats. In these animals, a significant increase in the number of caspase-3- positive neurons, both tyrosine hydroxylase (TH)-positive and -negative, was observed. Analysis of TH immunoreactivity revealed fewer TH-positive neurons and fibers in a medial and lateral portion of cell group A9 of the SN, an area that projects to the striatum, suggesting that gp120 induces retrograde degeneration of nigrostriatal neurons. We propose that dysfunction of the nigrostriatal dopaminergic system associated with HIV may be caused by a reduction of neurotrophic factor expression by gp120.  相似文献   

14.
Abstract: Glial cell line-derived neurotrophic factor (GDNF) was identified on the basis of its ability to enhance the development of embryonic mesencephalic dopamine neurons. It remains unknown whether GDNF is a physiologically relevant trophic factor for these neurons. We have shown that natural cell death among dopamine neurons of the substantia nigra occurs largely postnatally. To investigate whether GDNF may have the ability to support these neurons during their period of natural cell death, we have used a postnatal primary culture model. We find that GDNF is able to support the viability of postnatal nigral dopamine neurons by inhibiting apoptotic death. This ability of GDNF shows both regional specificity for the nigra and cellular specificity for the dopamine phenotype. Among eight other neurotrophic factors previously reported to support embryonic dopamine neurons, GDNF was unique in this ability. Thus, GDNF meets this criterion for a physiologically relevant trophic factor for dopamine neurons of the substantia nigra.  相似文献   

15.
Neuronal survival in the vertebrate peripheral nervous system depends on neurotrophic factors available from target tissues. In an attempt to identify novel survival factors, we have studied the effect of secreted factors from retinal cells on the survival of chick sympathetic ganglion neurons. Embryonic day 10 sympathetic neurons undergo programmed cell death after 48 h without appropriate levels of nerve growth factor (NGF). Retina Conditioned Media (RCM) from explants of embryonic day 11 retinas maintained for 4 days in vitro supported 90% of E10 chick sympathetic neurons after 48 h. Conditioned medium from purified chick retinal Muller glial cells supported nearly 100% of E10 chick sympathetic neurons. Anti‐NGF (1 μg/mL) blocked the survival effect of NGF, but did not block the trophic effect of RCM. Neither BDNF nor NT4 (0.1–50 ng/mL) supported E10 sympathetic neuron survival. Incubation of chimeric immunoglobulin‐receptors TrkA, TrkB, or TrkC had no effect on RCM‐induced sympathetic neuron survival. The survival effects were not blocked by anti‐GDNF, anti‐TGFβ, and anti‐CNTF and were not mimicked by FGFb (0.1–10 nM). LY294002 at 50 μM, but not PD098059 blocked sympathetic survival induced by RCM. Further, the combination of RCM and NGF did not result in an increase in neuronal survival compared with NGF alone (82% survival after 48 h). The secreted factor in RCM is retained in subfractions with a molecular weight above 100 kDa, binds to heparin, and is unaffected by dialysis, but is heat sensitive. Our results indicate the presence of a high‐molecular weight retinal secreted factor that supports sympathetic neurons in culture. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 13–23, 2002  相似文献   

16.
Previous reports have shown that neuronal and glial cells express functionally active thrombin receptors. The thrombin receptor (PAR‐1), a member of a growing family of protease activated receptors (PARs), requires cleavage of the extracellular amino‐terminus domain by thrombin to induce signal transduction. Studies from our laboratory have shown that PAR‐1 activation following the addition of thrombin or a synthetic thrombin receptor activating peptide (TRAP) induces motoneuron cell death both in vitro and in vivo. In addition to increasing motoneuron cell death, PAR‐1 activation leads to decreases in the mean neurite length and side branching in highly enriched motoneuron cultures. It has been suggested that motoneuron survival depends on access to sufficient target‐derived neurotrophic factors through axonal branching and synaptic contacts. However, whether the thrombin‐induced effects on motoneurons can be prevented by neurotrophic factors is still unknown. Using highly enriched avian motoneuron cultures, we show here that alone, soluble chick skeletal muscle extracts (CMX), brain‐derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and glial cell line–derived neurotrophic factor (GDNF) significantly increased motoneuron survival compared to controls, whereas nerve growth factor (NGF) did not have a significant effect on motoneuron survival. Furthermore, cotreatment with muscle‐derived agents (i.e., CMX, BDNF, GDNF) significantly prevented the death of motoneurons induced by α‐thrombin. Yet, non–muscle‐derived agents (CNTF and NGF) had little or no significant effect in reversing thrombin‐induced motoneuron death. CMX and CNTF significantly increased the mean length of neurites, whereas NGF, BDNF, and GDNF failed to enhance neurite outgrowth compared to controls. Furthermore, CMX and CNTF significantly prevented thrombin‐induced inhibition of neurite outgrowth, whereas BDNF and GDNF only partially reversed thrombin‐induced inhibition of neurite outgrowth. These findings show differential effects of neurotrophic factors on thrombin‐induced motoneuron degeneration and suggest specific overlaps between the trophic and stress pathways activated by some neurotrophic agents and thrombin, respectively. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 571–580, 1999  相似文献   

17.
We investigated postnatal alterations of neurons, interneurons and glial cells in the mouse substantia nigra using immunohistochemistry. Tyrosine hydroxylase (TH), neuronal nuclei (NeuN), parvalbumin (PV), neuronal nitric oxide synthase (nNOS), glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba 1), CNPase (2′,3′-cyclic nucleotide 3′-phosphodiesterase), brain-derived neurotrophic factor (BDNF) and glial cell-line-derived neurotrophic factor (GDNF) immunoreactivity were measured in 1-, 2-, 4- and 8-week-old mice. In the present study, the maturation of NeuN-immunopositive neurons preceded the production of TH in the substantia nigra during postnatal development in mice. Furthermore, the maturation of nNOS-immunopositive interneurons preceded the maturation of PV-immunopositive interneurons in the substantia nigra during postnatal development. Among astrocytes, microglia and oligodendrocytes, in contrast, the development process of oligodendrocytes is delayed in the substantia nigra. Our double-labeled immunohistochemical study suggests that the neurotrophic factors such as BDNF and GDNF secreted by GFAP-positive astrocytes may play some role in maturation of neurons, interneurons and glial cells of the substantia nigra during postnatal development in mice. Thus, our findings provide valuable information on the development processes of the substantia nigra.  相似文献   

18.
Abstract: The actions of basic fibroblast growth factor (bFGF) and ciliary neurotrophic factor (CNTF) on tyrosine hydroxylase (TH) gene expression were studied using IMR-32 neuroblastoma cells. Treatment of these cells with bFGF for 3 days induced the expression of detectable levels of immunoreactive TH protein and TH mRNA. In contrast, CNTF did not affect TH expression unless bFGF was present. In the presence of saturating amounts of bFGF, CNTF increased TH protein and mRNA levels of TH two- to threefold over those found in bFGF-treated cultures. The effects of CNTF on TH expression diminished with increasing culture time, and after 6 days of incubation CNTF no longer enhanced TH levels. The requirement for bFGF as cofactor in the effects of CNTF on TH was specific, as CNTF did not affect TH when it was coadministered with 8-(4-chlorophenylthio)-cyclic AMP, another agent that stimulates TH development in this cell line, and bFGF was not required for CNTF to stimulate the development of choline acetyltransferase. Moreover, cotreatment with bFGF reduced the ability of CNTF to enhance choline acetyltransferase. These results demonstrate that bFGF and CNTF can enhance expression of TH and that bFGF can modify the effects of CNTF on neurotransmitter phenotype.  相似文献   

19.
Glial cell line-derived neurotrophic factor (GDNF), neurturin (NTN) and neublastin/artemin (ART) are distant members of the transforming growth factor beta family, and have been shown to elicit neurotrophic effects upon several classes of peripheral and central neurons. Limited information from in vitro and expression studies has also substantiated a role for GDNF family ligands in mammalian somatosensory neuron development. Here, we show that although dorsal root ganglion (DRG) sensory neurons express GDNF family receptors embryonically, they do not survive in response to their ligands. The regulation of survival emerges postnatally for all GDNF family ligands. GDNF and NTN support distinct subpopulations that can be separated with respect to their expression of GDNF family receptors, whereas ART supports neurons in populations that are also responsive to GDNF or NTN. Sensory neurons that coexpress GDNF family receptors are medium sized, whereas small-caliber nociceptive cells preferentially express a single receptor. In contrast to brain-derived neurotrophic factor (BDNF)-dependent neurons, embryonic nerve growth factor (NGF)-dependent nociceptive neurons switch dependency to GDNF, NTN and ART postnatally. Neurons that survive in the presence of neurotrophin 3 (NT3) or neurotrophin 4 (NT4), including proprioceptive afferents, Merkel end organs and D-hair afferents, are also supported by GDNF family ligands neonatally, although at postnatal stages they lose their dependency on GDNF and NTN. At late postnatal stages, ART prevents survival elicited by GDNF and NTN. These data provide new insights on the roles of GDNF family ligands in sensory neuron development.  相似文献   

20.
TGF-beta and the regulation of neuron survival and death.   总被引:5,自引:0,他引:5  
Transforming growth factor-betas (TGF-betas) constitute a superfamily of multifunctional cytokines with important implications in morphogenesis, cell differentiation, and tissue remodeling. In the developing nervous system, TGF-beta2 and -beta3 occur in radial and astroglial cells as well as in many populations of postmitotic, differentiating neurons. TGF-beta1 is restricted to the choroid plexus and meninges. In addition to functions related to glial cell maturation and performances, TGF-beta2 and -beta3 are important regulators of neuron survival. In contrast to neurotrophic factors, as for example, neurotrophins, TGF-betas are most likely not neurotrophic by themselves. However, they can dramatically increase the potency of select neurotrophins, fibroblast growth factor-2, ciliary neurotrophic factor, and glial cell line-derived neurotrophic factor (GDNF). In the case of GDNF, we have shown that GDNF fails to promote the survival of highly purified neuron populations in vitro unless it is supplemented with TGF-beta. This also applies to the in vivo situation, where antibodies to all three TGF-beta isoforms fully prevent the trophic effect of GDNF on axotomized, target-deprived neurons. In addition to the TGF-beta isoforms -beta2 and -beta3, other members of the TGF-beta superfamily are expressed in the nervous system having important roles in embryonic patterning, cell migration, and neuronal transmitter determination. We have cloned and expressed a novel TGF-beta, named growth/differentiation factor-15 (GDF-15). GDF-15 is synthesized in the choroid plexus and released into the CSF, but also occurs in all regions investigated of the developing and adult brain. GDF-15 is a potent trophic factor for developing and 6-OHDA-lesioned midbrain dopaminergic neurons in vitro and in vivo, matching the potency of GDNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号