首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current paper synthesizes theory and data from the field of life history (LH) evolution to advance a new developmental theory of variation in human LH strategies. The theory posits that clusters of correlated LH traits (e.g., timing of puberty, age at sexual debut and first birth, parental investment strategies) lie on a slow-to-fast continuum; that harshness (externally caused levels of morbidity-mortality) and unpredictability (spatial-temporal variation in harshness) are the most fundamental environmental influences on the evolution and development of LH strategies; and that these influences depend on population densities and related levels of intraspecific competition and resource scarcity, on age schedules of mortality, on the sensitivity of morbidity-mortality to the organism’s resource-allocation decisions, and on the extent to which environmental fluctuations affect individuals versus populations over short versus long timescales. These interrelated factors operate at evolutionary and developmental levels and should be distinguished because they exert distinctive effects on LH traits and are hierarchically operative in terms of primacy of influence. Although converging lines of evidence support core assumptions of the theory, many questions remain unanswered. This review demonstrates the value of applying a multilevel evolutionary-developmental approach to the analysis of a central feature of human phenotypic variation: LH strategy.  相似文献   

2.
While previous studies on character displacement tended to focus on trait divergence and convergence as a result of long-term evolution, recent studies suggest that character displacement can be a special case of evolutionary rescue, where rapid evolution prevents species extinction by weakening interspecific competition. Here we analyzed a simple model to examine how the magnitude of genetic variation affects evolutionary rescue via ecological and reproductive character displacement that weakens interspecific competition in exploitation of shared resources (i.e., resource competition) and in the mating process caused by incomplete species recognition (i.e., reproductive interference), respectively. We found that slow trait divergence due to small genetic variance results in species extinction in reproductive character displacement but not in ecological character displacement. This is because one species becomes rare in slow character displacement, and this causes deterministic extinction due to minority disadvantage of reproductive interference. On the other hand, there is no deterministic extinction in the process of ecological character displacement. Furthermore, species extinction becomes less likely in the case of positive covariance between ecological and reproductive traits as divergence of the ecological trait (e.g., root depths) increases the divergence speed of the reproductive trait (e.g., flower colors) and vice versa. It will be interesting to compare intraspecific genetic (co)variance of ecological and reproductive traits in future studies for understanding how ecological and reproductive character displacement occur without extinction.  相似文献   

3.
Phenology is an important part of life history that is gaining increased attention because of recent climate change. We use game theory to model phenological adaptation in migratory birds that compete for territories at their breeding grounds. We investigate how the evolutionarily stable strategy (ESS) for the timing of arrival is affected by changes in the onset of spring, the timing of the resource peak, and the season length. We compare the ESS mean arrival date with the environmental optimum, that is, the mean arrival date that maximizes fitness in the absence of competition. When competition is strong, the ESS mean arrival date responds less than the environmental optimum to shifts in the resource peak but more to changes in the onset of spring. Increased season length may not necessarily affect the environmental optimum but can still advance the ESS mean arrival date. Conversely, shifting a narrow resource distribution may change the environmental optimum without affecting the ESS mean arrival date. The ESS mean arrival date and the environmental optimum may even shift in different directions. Hence, treating phenology as an evolutionary game rather than an optimization problem fundamentally changes what we predict to be an adaptive response to environmental changes.  相似文献   

4.
Conflicting hypotheses predict how traits mediate species establishment and community assembly. Traits of newly establishing individuals are predicted to converge, or be more similar to the resident, preexisting community, when the biotic or abiotic environment favors a single best phenotype, but are predicted to diverge when trait differences reduce competitive interactions. We tested these competing hypotheses using transplant seedlings in an old‐field environment, and assessed the contribution of inter‐ and intra‐specific transplant trait variation to community‐level patterns. Using a soil moisture gradient and resident plant removals, we determined when traits of newly‐establishing plants converge or diverge from the resident community by calculating community weighted mean traits for transplant and resident communities. We saw evidence of environmentally‐ and competitively‐driven trait shifts that resulted in both trait convergence and divergence from the resident community, whose traits reflect the combined effects of both drivers. Leaf dry matter content (LDMC) of transplants diverged in the presence of competition, whereas plant height and stem‐specific density (SSD) showed the opposite pattern, converging with the resident community in their presence. Specific leaf area (SLA) shifted with competition but did not reflect resident community SLA. All transplant traits were influenced by soil moisture, often in an interaction with competition, indicating that the strength of convergence or divergence is contingent on the abiotic environment. Intraspecific differences in transplant traits among treatments were evident in three of four traits; intraspecific height and SLA trends mirrored transplant community‐level trends, whereas intraspecific shifts in SSD were distinct from community‐level trends. Our study shows competition between plant species may cause traits of newly establishing plants to converge with the resident community, as frequently as it selects for trait divergence. These opposing effects of competition suggest that it plays a pervasive role in both intraspecific and species‐level trait differences among communities.  相似文献   

5.
Summary The evolutionarily stable (or ESS) emergence schedule for males of univoltine butterflies is analysed in an environment in which the female emergence schedule fluctuates stochastically between years. The ESS emergence curve, computed using the mutant invadability criterion, is shown to be the one that maximizes mean logarithmic lifetime mating success in the population in which it dominates. If males have accurate information about the female emergence schedule within each year, their emergence curve would evolve to the one predicted by a deterministic game model. The male emergence curve would then shift between years, closely following year to year changes in the female emergence pattern. If, instead, males have uncertainty about the female emergence schedule, the ESS male emergence curve becomes broader than the one predicted by the deterministic game model and will not track the between-year fluctuation of female emergence well. In a special case, we show how the between-year variation of mean emergence date, the variance of emergence date, the sexual difference in mean emergence dates (protandry) and the between-year correlation of mean emergence dates of both sexes should change with the degree of accuracy of information available to males.  相似文献   

6.
It has been shown that intraspecific competition and resource quality may affect life‐history traits of insects, such as body size, fecundity, and survival. However, intraspecific competition and resource quality may interact with each other. The study of such interacting effects is crucial for understanding the influence of these ecological variables on the selection of specific life‐history traits. Here, we investigated whether the interaction between intraspecific larval competition and variation in resource quality affects adult emergence and survival, egg size, fecundity, body size, and sexual size dimorphism (SSD) of the seed‐feeding beetle Acanthoscelides macrophthalmus (Schaeffer) (Coleoptera: Chrysomelidae: Bruchinae) when infesting Leucaena leucocephala (Lam.) De Wit (Fabaceae), its host plant. In the laboratory, beetles were reared on seeds that differed in quality (e.g., different hardness, seed size, water content), in the presence or absence of larval competition. Body size and SSD did not differ between treatments (with and without competition), nor were they affected by varying resource quality. Females subjected to competition during the larval stage and females emerging from seeds of higher quality, displayed the highest fecundity. The proportion of emergent adults was higher in the absence of competition. In addition, larger eggs were laid on the low‐quality resource in the absence of competition, showing a trade‐off between egg size and egg number. Adult survival differed among treatments and resource qualities, suggesting a higher investment in adult survival for individuals emerging from seeds of low quality in the presence of competition. Whether changes in specific traits could be selected for in detriment of others will depend on the strength of intraspecific competition, the variation in resource quality, and the plasticity in the life‐history traits investigated. This needs further clarification.  相似文献   

7.
The impact of intraspecific interactions on ecological stability and population persistence in terms of steady state(s) existence is considered theoretically based on a general competition model. We compare persistence of a structured population consisting of a few interacting (competitive) subpopulations, or groups, to persistence of the corresponding unstructured population. For a general case, we show that if the intra-group competition is stronger than the inter-group competition, then the structured population is less prone to extinction, i.e. it can persist in a parameter range where the unstructured population goes extinct. For a more specific case of a population with hierarchical competition, we show that relative viability of structured and unstructured populations depend on the type of density dependence in the population growth. Namely, while in the case of logistic growth, structured and unstructured populations exhibit equivalent persistence; in the case of Allee dynamics, the persistence of a hierarchically structured population is shown to be higher. We then apply these results to the case of behaviourally structured populations and demonstrate that an extreme form of individual aggression can be beneficial at the population level and enhance population persistence.  相似文献   

8.
In several species of short-lived Australian agamid lizards, an individual’s sex is determined by the nest temperatures encountered during incubation. The adaptive significance of such systems remains unclear. Here, we explore the hypothesis that (1) the optimal timing of hatching differs between the sexes, and thus (2) temperature-dependent sex determination (TSD) enhances maternal and offspring fitness by generating seasonal shifts in offspring sex ratios. Our model predicts that TSD can indeed enhance maternal fitness returns in short-lived lizards if (1) male–male competition is intense, thus reducing mating success of newly-matured males (but not females), and (2) the nesting season is prolonged, such that seasonal effects become significant. Available data on the distribution of TSD in Australian agamid lizards broadly support these predictions. Because both the level of male–male competition and the length of nesting season can vary at small spatial and temporal scales, selective forces on sex-determining mechanisms also should vary. Hence, our model predicts extensive small-scale (intraspecific) variation in sex-determining systems within agamid lizards, as well as among species.  相似文献   

9.
A diploid model is introduced and analyzed in which intraspecific competition is incorporated within the context of density-regulated selection. It is assumed that each genotype has a unique carrying capacity corresponding to the equilibrium population size when only that type is present. Each genotypic fitness at a single diallelic autosomal locus is a decreasing function of a distinctive effective population size perceived as a result of intraspecific competition. The resulting fitnesses are both density and frequency dependent with selective advantage determined by a balance between genotypic carrying capacity and sensitivity to intraspecific competition. A major finding is that intergenotypic interactions may allow genetic variation to be more easily maintained than in the corresponding model of purely density-dependent selection. In addition, numerical study confirms the possible existence of multiple interior equilibria and that neither overdominance in fitness nor carrying capacity is necessary for stability. The magnitude of the equilibrium population size and optimization principles are also discussed.  相似文献   

10.
1. Selection does not only operate in a genotype (G) × environment (E) context, but can also be modulated by the activities of organisms interacting with their environment (G × G × E). 2. The influences of aphid clonal identity and host plant (Vicia faba) intraspecific genetic variation on the performance of five genotypes of pea aphid (Acyrthosiphon pisum) were investigated – with and without interaction with a competing heterospecific clone of vetch aphid (Megoura viciae) – across three cultivars of V. faba. 3. Pea aphid performance in the presence of a competing vetch aphid clone (G × G × E) compared with the absence of competition (G × E) revealed strong context‐dependent, genotype‐specific shifts in performance, influenced by plant cultivar, competitor presence and their interaction. 4. The performance of vetch aphid in competition with each pea aphid clone was also compared. Here, competitor's genotype and abundance underlay a remarkably varied response by vetch aphid across interactions. 5. The study shows that aphid genotypes exhibit a varying degree of risk spreading, contingent on competitor identity and the patterns of aggregation across three plant cultivars. Owing to feedback loops between species activities and selective forces acting on them, our findings suggest that there are context‐dependent responses by competitors that are shaped via the interplay of the co‐occurring species and their biotic environment. 6. This work highlights the complexity of species interactions and the importance of investigating reciprocity between competition and intraspecific genetic variation. A better understanding of the eco‐evolutionary interactions between phloem‐feeding insects and their host plants can potentially be used to enhance crop protection and pest control.  相似文献   

11.
There is considerable variation in health and reproductive behaviours within and across human populations. Drawing on principles from Life History Theory, psychosocial acceleration theory predicts that individuals developing in harsh environments decrease their level of somatic investment and accelerate their reproductive schedule. Although there is consistent empirical support for this general prediction, most studies have focused on a few isolated life history traits and few have investigated the way in which individuals apply life strategies across reproductive and somatic domains to produce coordinated behavioural responses to their environment. In our study, we thus investigate the impact of childhood environmental harshness on both reproductive strategies and somatic investment by applying structural equation modeling (SEM) to cross-sectional survey data obtained in a representative sample of the French population (n = 1015, age: 19–87 years old, both genders). This data allowed us to demonstrate that (i) inter-individual variation in somatic investment (e.g. effort in looking after health) and reproductive timing (e.g. age at first birth) can be captured by a latent fast-slow continuum, and (ii) faster strategies along this continuum are predicted by higher childhood harshness. Overall, our results support the existence of a fast-slow continuum and highlight the relevance of the life history approach for understanding variations in reproductive and health related behaviours.  相似文献   

12.
Alternative reproductive tactics in males are often associated with divergent phenotypes expressed as phenotypically plastic threshold traits. The evolution of threshold traits in these species has been modeled under the conditional evolutionarily stable strategy (ESS). Both strategic and genetic models predict that perturbations to the fitness trade-off between the male morphs will lead to a shift in the ESS switch point of the threshold. So far, demographic factors that influence the competitive ability of male morphs have been investigated and related to intraspecific population variation in male dimorphic thresholds. Here we reveal evidence for the theoretical prediction that abiotic features of the environment, in particular its structural complexity, are likely to influence the ESS threshold. In the male dimorphic mite Sancassania berlesei, we monitored the survival of aggressive fighter males and their benign scrambler counterparts in populations that differed in structural complexity. We found that, consistent with our prediction, the complex habitat favored fighter males, enabling them to kill a greater number of rival scramblers. We found no effect of habitat complexity on the survival of fighter males. These results demonstrate how abiotic as well as biotic aspects of the environment can be important in determining the frequencies of males adopting alternative tactics in different species or populations.  相似文献   

13.
We analyze two mathematical models of adaptive investment in rewarding plant traits. In both models, the attractiveness of a particular trait value declines as the mean value in the population increases (asymmetric competition), giving relatively rewarding traits a competitive advantage. Including this competition for pollinator visits in a standard model of hermaphroditic sex allocation shifts additional allocation to pollinator rewards at the expense of allocation to pollen and seeds. In the second model, plants can invest additional resources in pollinator rewards but suffer reduced viability and rising costs due to excess pollen removal and within-plant selfing (geitonogamy). Despite these accumulating costs, increasing the magnitude of asymmetric competition exaggerates the ESS investment in rewards beyond the equilibrium in cases where attractiveness depends only on a plant’s absolute reward value. We suggest that the type of frequency dependent selection modeled here is fundamentally equivalent to sexual selection in animal populations (with some unique exceptions). Testing the main assumptions of our models may reveal whether seemingly “extravagant” floral traits are strictly analogous to the exaggerated secondary sexual traits of animals. An erratum to this article can be found at  相似文献   

14.
For the majority of species, per capita growth rate correlates negatively with population density. Although the popular logistic equation for the growth of a single species incorporates this intraspecific competition, multi-trophic models often ignore self-limitation of the consumers. Instead, these models often assume that the predator-prey interactions are purely exploitative, employing simple Lotka-Volterra forms in which consumer species lack intraspecific competition terms. Here we show that intraspecific interference competition can account for the stable coexistence of many consumer species on a single resource in a homogeneous environment. In addition, our work suggests a potential mechanism for field observations demonstrating that habitat area and resource productivity strongly positively correlate to biodiversity. In the special case of a modified Lotka-Volterra model describing multiple predators competing for a single resource, we present an ordering procedure that determines the deterministic fate of each specific consumer. Moreover, we find that the growth rate of a resource species is proportional to the maximum number of consumer species that resource can support. In the limiting case, when the resource growth rate is infinite, a model with intraspecific interference reduces to the conventional Lotka-Volterra competition model where there can be an unlimited number of coexisting consumers. This highlights the crucial role that resource growth rates may play in promoting coexistence of consumer species.  相似文献   

15.
In sessile and sedentary organisms, competition for space may have fitness consequences that depend strongly on ecological context. Colonial hydroids in the genus Hydractinia use an inducible defense when encountering conspecifics, and intraspecific competition is common in natural populations, often resulting in complete overgrowth of subordinate competitors. My goal in this study was to quantify the impacts of agonistic interactions in Hydractinia [GM] (an undescribed species from the Gulf of Mexico) in terms of three primary fitness components: colony survival, growth rate, and immature gonozooid production. The results demonstrate that the fitness consequences of intraspecific competition depend on the size at which competitive encounters are initiated and the growth form (an indicator of competitive ability) of the competitors. Moreover, some competing colonies consistently produced more immature gonozooids than the controls without competition, and they exhibited extremely low mortality even after 90 days of growth. These results have several ramifications. First, agonistic interactions do not always proceed to competitive elimination. Second, the increase in production of immature gonozooids--an investment in future reproduction--in response to intraspecific competition supports the hypothesis that indeterminately growing organisms increase sexual reproductive effort when growth becomes limiting. Lastly, in light of known ontogenetic variation in the ability of Hydractinia to differentiate among genetically related colonies, strongly size-dependent fitness consequences are consistent with an adaptive, kin-discriminating allorecognition system.  相似文献   

16.
Co-evolution of seed size and seed predation   总被引:3,自引:0,他引:3  
Using the evolutionarily stable strategy (ESS) approach in a model for the co-evolution of seed size and seed predation, I show that seed size variation within individual plants is favoured if there is a trade-off in the predator's attack rate for different seed sizes. A single seed size is not evolutionarily stable because a predator that is optimally adapted to one particular seed size cannot prevent invasion by plants with a different seed size. The model generates the following predictions. The ESS consists of a continuous range of seed sizes. Small seeds tend to be attacked more frequently than big seeds. Plants with many resources and plants with low (frequency-independent) juvenile mortality have more variable seeds than plants with few resources and a high juvenile mortality. Seed size variation is higher in fluctuating populations regulated by seed predation alone than in stable populations (partially) regulated by seedling competition. Predator searching behaviour does not directly affect the ESS seed size range, but may have an indirect effect by affecting population stability or the significance of seedling competition as a population regulating mechanism. Moreover, seed size distributions are found to be more skewed in favour of small seeds if predation is spatially non-uniform than if predation is more even. Application of the model to systems of several co-evolving plant and predator species is discussed.  相似文献   

17.
Effect of an abiotic disturbance on a lotic predator-prey interaction   总被引:2,自引:0,他引:2  
Sandra J. Walde 《Oecologia》1986,69(2):243-247
Summary A model derived from marine research, and recently applied to stream communities, suggests that community structure is more likely to be influenced by predators in benign versus harsh abiotic regimes. Experiments were conducted to determine if increasing the harshness of a particular regime would alter the impact of a stream invertebrate predator on prey densities in field enclosures. Density of a stonefly predator, Kogotus nonus, was varied in containers exposed to low (benign) and high (harsh) levels of fine sediment. As predicted by the model, the harsher regime eliminated predator effects in two of three experiments. In the third experiment, however, high levels of sediment actually enhanced the impact of the predator on the prey community. A consideration of the possible mechanisms underlying this model led to the conclusion that increasing the harshness of a regime can be expected to produce outcomes ranging from elimination to enhancement of predator effects, depending on how the regime is perceived by the predator versus the prey.  相似文献   

18.
Studies of realized niche shifts in alien species typically ignore the potential effects of intraspecific niche variation and different invaded‐range environments on niche lability. We incorporate our detailed knowledge of the native‐range source populations and global introduction history of the delicate skink Lampropholis delicata to examine intraspecific variation in realized niche expansion and unfilling, and investigate how alternative niche modelling approaches are affected by that variation. We analyzed the realized niche dynamics of L. delicata using an ordination method, ecological niche models (ENMs), and occurrence records from 1) Australia (native range), 2) New Zealand, 3) Hawaii, 4) the two distinct native‐range clades that were the sources for the New Zealand and Hawaii introductions, and 5) the species’ global range (including Lord Howe Island, Australia). We found a gradient of realized niche change across the invaded ranges of L. delicata: niche stasis on Lord Howe Island, niche unfilling in New Zealand (16%), and niche unfilling (87%) and expansion (14%) in Hawaii. ENMs fitted to native‐range data generally identified suitable climatic conditions at sites where the species has established non‐native populations, whereas ENMs based on native‐range source clades and non‐native populations had lower spatial transferability. Our results suggest that the extent to which realized niches are maintained during invasion does not depend on species‐level traits. When realized niche shifts are predominately due to niche unfilling, fully capturing species’ responses along climatic gradients by basing ENMs on native distributions may be more important for accurate invasion forecasts than incorporating phylogenetic differentiation, or integrating niche changes in the invaded range.  相似文献   

19.
Differential game theory is applied to the analysis of evolutionarily stable strategies (ESS) in this article. A general form for the evolutionary differential game is introduced in the case of intra-specific competition, and a connection between the ESS and the mathematical Nash solution concept is indicated. A dynamic ESS is found for the height growth strategies of trees. A hierarchical model is introduced to account for different time constants in simultaneous selection processes. Differential evolutionary games are compared with static evolutionary games utilizing the hierarchical approach.  相似文献   

20.
Individual generalist predators often have more specialized diets than their populations do. Individual specialization (IS) is influenced by ecological opportunity, intraspecific competition, and interspecific competition, although the effects of these parameters are inconsistent across studies. We investigated IS in five species of frogs and toads, Anaxyrus americanus, A. fowleri, Lithobates catesbeianus, L. clamitans, and L. sphenocephalus. We used the natural history and ecology of each species to predict which parameters would influence IS. Our predictions were supported for some species but not others. We predicted IS would be positively influenced by resource diversity in all species, but this prediction held for only three species, with the relationship significant in A. fowleri and L. catesbeianus and marginally significant in A. americanus. We also predicted that interspecific competition would have a negative relationship with IS in L. clamitans because L. catesbeianus is competitively superior to L. clamitans and likely to suppress its foraging options. This prediction was upheld. Finally, we predicted that IS in A. americanus, A. fowleri, and L. clamitans would be influenced by intraspecific competition. However, IS was not influenced by intraspecific competition in any species, a surprising result given that intraspecific competition has traditionally been assumed to be the ecological parameter with the strongest effects on IS. Many previous studies did not simultaneously consider all three ecological parameters, which may have increased the apparent importance of intraspecific competition for IS. Our results revealed that the ecological parameters affected IS differently even across closely related and ecologically similar species, and demonstrated that these differences are sometimes predictable based on natural history. This study also suggests that sympatric ecological speciation based on IS may be rare because the ecological parameters driving IS are inconsistent across species, and the strength of their effects on intraspecific diet variation varies in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号