首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa‐Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain dengue transmission during the dry season.  相似文献   

2.
It is currently unclear what role microhabitat land cover plays in determining the seasonal spatial distribution of Aedes aegypti and Culex quinquefasciatus, disease vectors of dengue and West Nile Virus, respectively, in Tucson, AZ. We compared mosquito abundance to sixteen land cover variables derived from 2010 NAIP multispectral data and 2008 LiDAR height data. Mosquitoes were trapped with 30–9 traps from May to October of 2010 and 2011. Variables were extracted for five buffer zones (10–50 m radii at 10 m intervals) around trapping sites. Stepwise regression was performed to determine the best scale for observation and the influential land cover variables. The 30 m radius buffer was determined to be the best for observing the land cover‐mosquito abundance relationship. Ae. aegypti presence was positively associated with structure and medium height trees and negatively associated with bare earth; Cx. quinquefasciatus presence was positively associated with pavement and medium height trees and negatively associated with shrubs. These findings emphasize vegetation, impervious surfaces, and soil influences on mosquito presence in an urban setting. Lastly, the land cover‐mosquito abundance relationships were used to produce risk maps of seasonal presence that highlight high risk areas in Tucson, which may be useful for focusing mosquito control program actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号