首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA synthesis during morphogenesis of the fungusMucor racemosus   总被引:6,自引:0,他引:6  
Bacteroides succinogenes produces acetate and succinate as major products of carbohydrate fermentation. An investigation of the enzymes involved indicated that pyruvate is oxidized by a flavin-dependent pyruvate cleavage enzyme to acetyl-CoA and CO2. Active CO2 exchange is associated with the pyruvate oxidation system. Reduction of flavin nucleotides is CoASH-dependent and does not require ferredoxin. Acetyl-CoA is further metabolized via acetyl phosphate to acetate and ATP. Reduced flavin nucleotide is used to reduce fumarate to succinate by a particulate flavin-specific fumarate reductase reaction which may involve cytochrome b. Phosphoenolpyruvate (PEP) is carboxylated to oxalacetate by a GDP-specific PEP carboxykinase. Oxalacetate, in turn, is converted to malate by a pyridine nucleotide-dependent malate dehydrogenase. The organism has a NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. The data suggest that reduced pyridine nucleotides generated during glycolysis are oxidized in malate formation and that the electrons generated during pyruvate oxidation are used to reduce fumarate to succinate.  相似文献   

2.
Whole cells of Desulfobulbus propionicus fermented [1-13C]ethanol to [2-13C] and [3-13C]propionate and [1-13C]-acetate, which indicates the involvement of a randomizing pathway in the formation of propionate. Cell-free extracts prepared from cells grown on lactate (without sulfate) contained high activities of methylmalonyl-CoA: pyruvate transacetylase, acetase kinase and reasonably high activities of NAD(P)-independent L(+)-lactate dehydrogenase NAD(P)-independent pyruvate dehydrogenase, phosphotransacetylase, acetate kinase and reasonably high activity of NAD(P)-independent L(+)-lactate dehydrogenase, fumarate reductase and succinate dehydrogenase. Cell-free extracts catalyzed the conversion of succinate to propionate in the presence of pyruvate, CoA and ATP and the oxaloacetate-dependent conversion of propionate to succinate. After growth on lactate or propionate in the presence of sulfate similar enzyme levels were found except for fumarate reductase which was considerably lower. Fermentative growth on lactate led to higher cytochrome b contents than growth with sulfate as electron acceptor.The labeling studies and the enzyme measurements demonstrate that in Desulfobulbus propionate is formed via a succinate pathway involving a transcarboxylase like in Propionibacterium. The same pathway may be used for the degradation of propionate to acetate in the presence of sulfate.Abbreviations DCPIP 2,6-dichlorophenolindophenol - PEP phosphoenolpyruvate  相似文献   

3.
Pyruvate kinase from Propionibacterium shermanii was shown to be activated by glucose-6-phosphate (G-6-P) at non-saturating phosphoenol pyruvate (PEP) concentrations but other glycolytic and hexose monophosphate pathway intermediates and AMP were without effect. Half-maximal activation was obtained at 1 mM G-6-P. The presence of G-6-P decreased both the PEP0.5V and ADP0.5V values and the slope of the Hill plots for both substrates. The enzyme was strongly inhibited by ATP and inorganic phosphate (Pi) at all PEP concentrations. At non-saturating (0.5 mM) PEP, half-maximal inhibition was obtained at 1.8 mM ATP or 1.4 mM Pi. The inhibition by both Pi and ATP was largely overcome by 4 mM G-6-P. The specific activity of pyruvate kinase was considerably higher in lactate-, glucose- and glycerol-grown cultures than that of the enzyme catalysing the reverse reaction, pyruvate, phosphate dikinase. It is suggested that the activity of pyruvate kinase in vivo is determined by the balance between activators and inhibitors such that it is inhibited during gluconeogenesis while, during glycolysis, the inhibition is relieved by G-6-P.Abbreviations PEP phosphoenolpyruvate - G-6-P glucose-6-phosphate - Pi inorganic phosphate  相似文献   

4.
Pyruvate kinase (ATP: pyruvate phosphotransferase (EC 2.7.1.40) was partially purified from both autotrophically and heterotrophycally grown Paracoccus denitrificans. The organism grown under heterotrophic conditions contains four times more pyruvate kinase than under autotrophic conditions. The enzyme isolated from both sources exhibited sigmoidal kinetics for both phosphoenolpyruvate (PEP) and ADP. The apparent M m for ADP and PEP in the autotrophic enzyme were 0.63 mM ADP and 0.25 mM PEP. The effect of several low molecular weight metabolites on the pyruvate kinase activity was investigated. Ribose-5-phosphate, glucose-6-phosphate and AMP stimulated the reaction at low ADP levels; this stimulation was brought about by an alteration in the apparent K m for ADP. The pyruvate kinases differ in their response to adenine nucleotides, but both preparations seem to be under adenylate control. The results are discussed in relation to the role of pyruvate kinase as a regulatory enzyme in P. denitrificans grown under both autotrophic and heterotrophic conditions.Non-Common Abbreviations PEP phosphoenolpyruvate - R-5-P ribose-5-phosphate - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate  相似文献   

5.
Cotugnia digonopora, a fowl cycllophyllidean cestode, was found to possess most of the enzymes, associated with the glycolytic sequence and phosphoenolpyruvate branch point, in the cytosol fraction. Enzymes of malate metabolism were predominantly mitrochondrial. Anthelmintic agents inhibited hexokinase, phosphofructokinase, glucose-6-phosphate dehydrogenase, malate dehydrogenase, fumarate reductase, and malic enzyme. In intact worms this effect was significantly reduced. However, the activities of glycogen Phosphorylase and pyruvate kinase were significantly enhanced. Communication No. 4113 from CDRI, Lucknow.  相似文献   

6.
The effect of anaerobiosis and anhydrobiosis on the extent of binding of glycolytic enzymes to the particulate fraction of the cell was studied in Artemia salina embryos. During control aerobic development, trehalase, phosphofructokinase and pyruvate kinase showed an increase in the percentage associated with the particulate fraction which is consistent with the carbohydrate-based metabolism of Artemia embryos. However, anaerobiosis resulted in decreased enzyme binding for six glycolytic enzymes; hexokinase, aldolase, pyruvate kinase and lactate dehydrogenase were the exceptions. Decreased enzyme binding was also observed after exposure to dehydrating conditions. The results suggest that glycolytic rate could be regulated by changes in the distribution of glycolytic enzymes between free and bound forms in Artemia embryos. This reversible interaction of glycolytic enzymes with structural proteins may account for part of the metabolic arrest observed during anaerobic dormancy and anhydrobiosis.Abbreviation pHi intracellular concentration of H+ ions  相似文献   

7.
Actinobacillus sp. 130Z fermented glucose to the major products succinate, acetate, and formate. Ethanol was formed as a minor fermentation product. Under CO2-limiting conditions, less succinate and more ethanol were formed. The fermentation product ratio remained constant at pH values from 6.0 to 7.4. More succinate was produced when hydrogen was present in the gas phase. Actinobacillus sp. 130Z grew at the expense of fumarate and l-malate reduction, with hydrogen as an electron donor. Other substrates such as more-reduced carbohydrates (e.g., d-sorbitol) resulted in higher succinate and/or ethanol production. Actinobacillus sp. 130Z contained the key enzymes involved in the Embden-Meyerhof-Parnas and the pentose-phosphate pathways and contained high levels of phosphoenolpyruvate (PEP) carboxykinase, malate dehydrogenase, fumarase, fumarate reductase, pyruvate kinase, pyruvate formate-lyase, phosphotransacetylase, acetate kinase, malic enzyme, and oxaloacetate decarboxylase. The levels of PEP carboxykinase, malate dehydrogenase, and fumarase were significantly higher in Actinobacillus sp. 130Z than in Escherichia coli K-12 and accounted for the differences in succinate production. Key enzymes in end product formation in Actinobacillus sp. 130Z were regulated by the energy substrates. Received: 2 September 1996 / Accepted: 10 January 1997  相似文献   

8.
A true breeding strain was made from a wild-caught mouse with low erythrocyte pyruvate kinase (E.C. 2.7.1.40) activity. This variation showed additive inheritance and segregated as an allele at a single locus (Pk-1 b). Mice homozygous for the reduced blood pyruvate kinase activity cosegregated for reduced liver activity. In both these tissues the variant enzyme had a lowered heat stability and reduced K m values for ADP. An increased stimulation by FDP was also detected in the liver pyruvate kinase. No difference in the isoelectric point of the variant enzyme in either erythrocyte or liver was observed when compared with the enzyme from C57BL mice (Pk-1 a/Pk-1 a). It is concluded that Pk-1 is the structural gene for the erythrocyte and the major liver pyruvate kinase. No other tissue pyruvate kinase showed altered characteristics.This work was supported by a Medical Research Council grant.  相似文献   

9.
Investigations of the uptake of ammonium (NH 4 + ) by Rhodopseudomonas capsulata B100 supported the presence of an NH 4 + transport system. Experimentally NH 4 + was determined by electrode or indophenol assay and saturation kinetics were observed with two apparent K m's of 1.7 M and 11.1 M (pH 6.8, 30°) and a V max at saturation of 50–60 nmol/min·mg protein. The optimum pH and temperature were 7.0 and 33° C, respectively. The Q10 quotient was calculated to be 1.9 at 100 M NH 4 + , indicating enzymatic involvement. In contrast to the wild type, B100, excretion of NH 4 + , not uptake, was observed in a glutamine auxotroph, R. capsulata G29, which is derepressed for nitrogenase and lacks glutamine synthetase activity. G29R1, a revertant of G29, also took up NH 4 + at the same rate as wild type and had fully restored glutamine synthetase activity. Partially restored derivatives, G29R5 and G29R6, grew more slowly than wild type on NH 4 + as the nitrogen source, remained derepressed for nitrogenase in the presence of NH 4 + , and displayed rates of NH 4 + uptake in proportion to their glutamine synthetase activity. Ammonium uptake and glutamine synthetase activity were also restored in R. capsulata G29 exconjugants which had received the plasmid pPS25, containing the R. capsulata glutamine synthetase structural gene. These data suggest that NH 4 + transport is tightly coupled to assimilation.Abbreviations used CHES cyclohexylaminoethanesulfonic acid - GS glutamine synthetase - SDS sodium dodecylsulfate  相似文献   

10.
A succinimide-assimilating bacterium, Pseudomonas putida s52, was found to be a potent producer of pyruvate from fumarate. Using washed cells from P. putida s52 as catalyst, 400 mM pyruvate was produced from 500 mM fumarate in a 36-h reaction. Bromopyruvate, a malic enzyme inhibitor, was used for the selection of mutants with higher pyruvate productivity. A bromopyruvate-resistant mutant, P. putida 15160, was found to be an effective catalyst for pyruvate production. Moreover, under batch bioreactor conditions, 767 mM of pyruvate was successfully produced from 1,000 mM fumarate in a 72-h reaction with washed cells from P. putida 15160 as catalyst.  相似文献   

11.
When Clostridium formicoaceticum was grown on fumarate or l-malate crude cell extracts contained a high fumarate reductase activity. Using reduced methyl viologen as electron donor the specific activity amounted to 2–3.5 U per mg of protein. Reduced benzyl viologen, FMNH2 and NADH could also serve as electron donors but the specific activities were much lower. The NADH-dependent activity was strictly membrane-bound and rather labile. Its specific activity did not exceed 0.08 U per mg of particle protein. Fumarate reductase activity was also found in cells of C. formicoaceticum grown on fructose, gluconate, glutamate and some other substrates.The methyl viologen-dependent fumarate reductase activity could almost completely be measured with intact cells whereas only about 25% of the cytoplasmic acetate kinase activity was detected with cell suspensions. The preparation of spheroplasts from cells of C. formicoaceticum in 20 mM HEPES-KOH buffer containing 0.6 M sucrose and 1 mM dithioerythritol resulted in the specific release of 88% of the fumarate reductase activity into the spheroplast medium. Only small amounts of the cytoplasmic proteins malic enzyme and acetate kinase were released during this procedure. These results indicate a peripheral location of the fumarate reductase of C. formicoaceticum on the membrane.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - O.D optical density - DTE dithioerythritol  相似文献   

12.
Summary Hansenula anomala, a yeast lacking malate enzyme, was able to grow in media containing malate or aspartate as sole carbon and energy sources. Both aspartate--ketoglutarate transaminase and pyruvate kinase activities changed their levels when the yeast was grown on different carbon sources. Pyruvate kinase activity was increased by fructose 1,6-diphosphate.These results indicate that in this yeast malate enzyme is not indispensable for the formation of pyruvate from malate or aspartate and that C4 dicarboxylic acids may provide pyruvate through the combined action of phosphoenolpyruvate carboxykinase and pyruvate kinase. It is also concluded that aspartate--ketoglutarate transaminase and pyruvate kinase are under regulatory control in Hansenula anomala.  相似文献   

13.
After NTG treatment of the very effective wild type strain P121 ofRhizobium leguminosarum biovarphaseoli, mutants defective in the utilization of sugars or organic acids were obtained. All the mutants nodulated the cultivar Goldie ofPhaseolus vulgaris. The arabinose, fructose, glucose and pyruvate utilization mutants formed nodules similar in shape and size to the nodules formed by the wild type strain. These mutants exhibited an acetylene reduction activity significantly lower than the activity observed with the wild type strain. All the C4-dicarboxylic acid utilization mutatns, formed ineffective nodules that did not show a significant acetylene reduction activity. The C4-dicarboxylic acids uptake system is apparently inducible in the free-living bacteria of strain P121. When P121 cells were grown on glucose in the presence of 2.5 mM malate, the rate of glucose-dependent O2 consumption significantly decreased suggesting the presence of a catabolite repression-like phenomenon. Isolated bacteroids of strain P121, under the experimental conditions used, were able to oxidize succinate, fumarate or malate but did not oxidize pyruvate, glucose, fructose or sucrose.  相似文献   

14.
Pyruvate kinase studies in the granulocyte-macrophage lineage duringin vitro differentiation have been performed using culture techniques on GM-CFC cells and a study has also been done in bone marrow cells.The enzyme exhibits biphasic behaviour with respect to both of its substrates in cells derived fromin vitro cultures at 5 and 7 days of incubation period. However in bone marrow cells these kinetics are only observed for ADP.The different kinetic behaviour of pyruvate kinase toward Fru-1,6-P2, Ala, Phe and ATP in the three cellular populations allows us to conclude that the expression of pyruvate kinase is associated with the differentiation of these cells.Abbreviations GM-CFC granulocyte-macrophage colony forming cells - PK pyruvate kinase - CFU-E Colony Forming Units Erythroid - Ew Error weight - PEP phosphoenolpyruvate - Fru-1,6-P2 fructose 1,6-bisphosphate - Ala L-alanine - Phe L-phenylanine - 5 GM granulocytemacrophage colonies obtained after 5 days incubation - 7 GM granulocyte-macrophage colonies obtained after 7 days incubation - h Hill coefficient - S0,5 substrate concentration that yields half-maximal velocity  相似文献   

15.
The effects of anoxia (N2 atmosphere at 5 °C) or freezing (at-8 °C) exposure in vivo on the activities of five enzymes of carbohydrate metabolism were assessed in foot muscle and hepatopancreases of the marine periwinkle Littorina littorea. Changes in glycogen phosphorylase, glycogen synthetase, pyruvate kinase and pyruvate dehydrogenase under either stress were generally consistent with covalent modification of the enzymes to decrease enzyme activity and/or convert the enzyme to a less active form. However, no evidence for a similar covalent modification of phosphofructokinase was found. The metabolic effects of freezing and anoxia were generally similar, suggesting that a primary contributor to freezing survival is the implementation of anaerobic metabolism and metabolic arrest mechanisms that also promote anoxia survival in marine molluses. However, in hepatopancreas phosphorylase was activated and pyruvate kinase remained in two enzyme forms in freezing-exposed snails, contrary to the results for anoxic animals. Ion exchange chromatography on DE-52 Sephadex revealed the presence of two forms of pyruvate kinase in both tissues of control L. littorea, eluting at 30–50 mmol·1-1 KCl (peak I) or 90–110 mmol·1-1 KCl (peak II). Anoxia exposure converted pyruvate kinase in both tissues to the peak I form, as did freezing for foot muscle pyruvate kinase. Kinetic analysis showed that peak I pyruvate kinase had lower affinities for substrates, phosphoenolpyruvate and ADP, and was very strongly inhibited by l-alanine compared with the peak II enzyme. Peak I pyruvate kinase had an I 50 value for l-alanine of 0.38 mmol·1-1, whereas peak II pyruvate kinase was unaffected by l-alanine evenat 40 mmol·1-1. In vitro incubation of extracts from control foot muscle under conditions promoting phosphorylation or dephosphorylation identified the peak I and II forms as the low and high phosphate forms, respectively. This result for L. littorea pyruvate kinase was highly unusual and contrary to the typical effect of anoxia on pyruvate kinase in marine molluscs which is to stimulate the phosphorylation of pyruvate kinase and, thereby, convert the enzyme to a less active form.Abbreviations AABS p-(p-aminophenylazo)benzene sulphonic acid - F2, 6P fructose-2,6-bisphosphate - F6P fructose-6-phosphate - G6P glucose-6-phosphate - GP glycogen phosphorylase - GS glycogen synthase - I 50 inhibitor concentration reducing enzyme velocity by 50% - MR metabolic rate - PDH pyruvate dehydrogenase - PEP phosphoenopyruvate - PFK phosphofructokinase - PK pyruvate kinase - SW sea water - F a air temperature - TCA trichloroacetic acid - UDPG uridine-diphosphate glucose - WW wet weight  相似文献   

16.
Formate was formed in extracts of Chlorogonium elongatum via direct cleavage of pyruvate by a pyruvate formate-lyase (PFL, EC 2.3.1.54). The conversion of PFL to the catalytically active form required S-adenosylmethionine, ferric (2+), photoreduced deazariboflavin as reductant, pyruvate as allosteric effector and strict anaerobic conditions. At the optimum pH (pH 8.0), PFL catalyzed formate formation, pyruvate synthesis and the isotope exchange from [14C]formate into pyruvate with rates of 30.0, 1.5 and 1.2 nmol min-1 mg-1 protein, respectively. Treatment of the active enzyme with O2 irreversibly inactivated PFL activity (half-time 2 min). In addition to PFL, the activities of phosphotransacetylase (EC 2.3.1.8), acetate kinase (EC 2.7.2.1), aldehyde dehydrogenase (CoA acetylating, EC 1.2.1.10) and alcohol dehydrogenase (EC 1.1.1.1) were also detected in extracts of C. elongatum. The occurrence of these enzymes indicates pyruvate degradation via a formate-fermentation pathway during anaerobiosis of algal cells in the dark.Abbreviations DTT dithiothreitol - Hepes 4-(2-hydroxyethyl)-1-piperazine+ethane sulfonic acid - PFL pyruvate formate-lyase  相似文献   

17.
An electrophoretically detectable variant of pyruvate kinase (EC 2.7.1.40) has been found in the house mouse Mus musculus. The variant was seen in all tissues examined except liver and red cells. The gene (Pk-3) determining this electrophoretic variation is inherited as an autosomal codominant located on chromosome 9. Our data confirm that the genetic determination of pyruvate kinase in liver and red cells is separate from that in other tissues. In addition, our results indicate that the muscle (M1) and kidney (M2) pyruvate kinase isozymes share at least one genetic determinant and may in fact be determined by the same structural gene.This work was supported by the Medical Research Council and by NIH Grants GM 20919 and RR 01183. The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

18.
The membrane bound fumarate reductase (FRD) from the sulphate-reducer Desulfovibrio gigas was purified from cells grown on a fumarate/sulphate medium and extensively characterized. The FRD is isolated with three subunits of apparent molecular masses of 71, 31, and 22 kDa. The enzyme is capable of both fumarate reduction and succinate oxidation, exhibiting a higher specificity toward fumarate (K m for fumarate is 0.02 and for succinate 2 mM) and a reduction rate 30 times faster than that for oxidation. Studies by Visible and EPR spectroscopies allowed the identification of two B-type haems and the three iron–sulphur clusters usually found in FRDs and succinate dehydrogenases: [2Fe-2S]2+/1+ (S1), [4Fe-4S]2+/1+ (S2), and [3Fe-4S]1+/0 (S3). The apparent macroscopic reduction potentials for the metal centers, at pH 7.6, were determined by redox titrations: –45 and –175 mV for the two haems, and +20 and –140 mV for the S3 and S1 clusters, respectively. The reduction potentials of the haem groups are pH dependent, supporting the proposal that fumarate reduction is associated with formation of the membrane proton gradient. Furthermore, co-reconstitution in liposomes of D. gigas FRD, duroquinone, and D. gigas cytochrome bd shows that this system is capable of coupling succinate oxidation with oxygen reduction to water.  相似文献   

19.
Campylobacter sputorum subspecies bubulus was grown in continuous culture with excess of l-lactate or formate, and growth-limiting amounts of oxygen, fumarate, nitrate or nitrite. l-Lactate was oxidized to acetate, fumarate was reduced to succinate, and nitrate and nitrite were reduced to ammonia. The Y lactate values (g dry weight bacteria/g mol lactate) for the respective hydrogen acceptors were much higher than the Y formate values. Steady state cultures on formate and nitrite could only be obtained at a low dilution rate and low nitrite concentrations in the growth medium. In H+/2e measurements with lactate-grown cells proton ejections were observed with lactate or pyruvate as a hydrogen donor, and oxygen or hydrogen peroxide as a hydrogen acceptor. Proton ejection was also observed with pyruvate and nitrate. Proton ejection did not occur with lactate and nitrate, neither with lactate or pyruvate and fumarate or nitrite. With formate as a hydrogen donor acidification occurred with all hydrogen acceptors mentioned. It has been concluded that during growth on lactate and fumarate or nitrite substrate level phosphorylation at acetate formation is the sole ATP-generating system. Growth on formate and fumarate or nitrite is explained by a proton gradient generated as a result of oxidation of formate at the periplasmic side of the cytoplasmic membrane. With oxygen and nitrate additional ATP is formed by electron transport-linked phosphorylation. The low molar growth yields with formate are explained by the observation that formate-grown cells had a great permeability to protons.Abbreviations H+/2e value number of protons ejected per electron pair transported in the respiratory system - P/2e value mol of ATP formed per electron pair transported in the respiratory system - CCCP carbonyl cyanide m-chlorophenyl-hydrazone  相似文献   

20.
The cytosolic pyruvate kinase (PKC, EC 2.7.1.40) and phosphoenolpyruvate carboxylase (PEP-Case, EC 4.1.1.31) from cotyledons of 6-d-old castor seedlings (Ricinus communis L.) have been partially purified and characterized. PKC was purified 370-fold to a specific activity of 20 mol · min 1·(mg protein)–1, and was shown to exist as a 237-kDa homotetramer. In addition, PKC displayed hyperbolic substrate saturation kinetics and demonstrated pH-dependent modulation by several metabolite effectors including glutamine, glutamate, arginine, malate and 2-oxoglutarate. Most were inhibitors at pH 6.9, while activation by glutamine, asparagine and arginine and only weak inhibition for the rest were observed at pH 7.5. PEPCase was purified 33-fold to a final specific activity of 1 mol · min–1 · (mg protein)–1. The subunit and native Mr for the enzyme were shown to be 100 and 367 kDa, respectively, suggesting a homotetrameric native structure. PEPCase displayed a typical pH activity profile with an alkaline optimum and activity decreasing rapidly below pH 7.0. The enzyme was potently inhibited by malate, isocitrate, aspartate and glutamate at pH 7.0, whereas inhibition by these compounds was considerably diminished at pH 7.5. A model depicting the regulation of glycolytic carbon flow during amino-acid and sucrose import by castor cotyledons is proposed.Abbreviations IgG immunoglobulin G - I50a inhibitor concentration producing 50 inhibition of enzyme activity - PKC and PKpa cytosolic and plastidic isoenzymes of pyruvate kinase, respectively - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase - 3-PGA 3-phosphoglycerate This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号