首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synopsis A glucose-6-phosphate-hydrolyzing enzyme was localized histochemically in a variety of secretory cells of the rat. Cells exhibiting enzyme activity include thyroid and parafollicular cells, parathyroid and secretory epithelium of the trachea, bronchi and bronchioles. Clusters of ganglion cells underlying these organs are also heavily reactive. In its cytoplasmic staining pattern and its ability to hydrolyze glucose-6-phosphate, the enzyme activity localized in these secretory cells appears similar to glucose-6-phosphatase found in liver and kidney.  相似文献   

2.
Morphometric, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations have displayed regional differences in the mare oviductal epithelium. The entire mucosa of the oviduct was lined with a pseudostratified epithelium, which consisted of two distinct cell types, ciliated and non-ciliated. Ciliated cells were predominant in the three different segments of the oviduct and their percentage increased from fimbriae to ampulla and significantly decreased in the isthmus. SEM revealed in the infundibulum finger-like mucosal folds, some of them interconnected, in the ampulla numerous and elaborated branched folds of the mucosa, whereas the isthmus displayed a narrow lumen, short and non-branched mucosal folds. In the ampulla and isthmus the majority of non-ciliated cells showed apical blebs provided or not of short microvilli. TEM displayed different ultrastructural features of ciliated and non-ciliated cells along the oviduct. Isthmus ciliated cells presented a more electron-dense cytoplasm than in infundibulum and ampulla cells and its cilia were enclosed in an amorphous matrix. The non-ciliated cells of infundibulum did not contain secretory granules but some apical endocytic vesicles and microvilli coated by a well developed glycocalyx. Non-ciliated cells of ampulla and isthmus contained secretory granules. Apical protrusions of ampulla displayed two types of secretory granules as well as occasional electron-lucent vesicles. Isthmus non-ciliated cells showed either electron-lucent or electron-dense cytoplasm and not all contained apical protrusions. The electron-dense non-ciliated cells displayed microvilli coated with a well developed glycocalyx. Three types of granules were observed in the isthmus non-ciliated cells. The regional differences observed along the epithelium lining the mare oviduct suggest that the epithelium of the each segment is involved in the production of a distinctive microenvironment with a unique biochemical milieu related to its functional role.  相似文献   

3.
Dictyostelium discoideum form groups of approximately 2 x 10(4) cells. The group size is regulated in part by a negative feedback pathway mediated by a secreted multipolypeptide complex called counting factor (CF). The CF signal transduction pathway involves CF-repressing internal glucose levels by increasing the K(m) of glucose-6-phosphatase. Little is known about how this enzyme is regulated. Glucose-6-phosphatase is associated with microsomes in both Dictyostelium and mammals. We find that the activity of glucose-6-phosphatase in crude microsomes from cells with high, normal, or low CF activity had a negative correlation with the amount of CF present in these cell lines. In crude cytosols (supernatants from ultracentrifugation of cell lysates), the glucose-6-phosphatase activity had a positive correlation with CF accumulation. The crude cytosols were further fractionated into a fraction containing molecules greater than 10 kDa (S>10K) and molecules less than 10 KDa (S<10K). S>10K from wild-type cells strongly repressed the activity of glucose-6-phosphatase in wild-type microsomes, whereas S>10K from countin(-) cells (cells with low CF activity) significantly increased the activity of glucose-6-phosphatase in wild-type microsomes by decreasing K(m). The regulatory activities in the wild-type and countin(-) S>10Ks are heat-labile and protease-sensitive, suggesting that they are proteins. S<10K from both wild-type and countin(-) cells did not significantly change glucose-6-phosphatase activity. Together, the data suggest that, as a part of a pathway modulating multicellular group size, CF regulates one or more proteins greater than 10 KDa in crude cytosol that affect microsome-associated glucose-6-phosphatase activity.  相似文献   

4.
Controlled proteolytic digestion by trypsin or bacterial proteases limited to the cytosolic side of the native microsomal membrane is not efficient to inhibit glucose-6-phosphate hydrolysis. Modification of the microsomes with deoxycholate prior to protease treatment is prerequisite to allow accessibility of the integral protein and inhibition of enzyme activity. Glucose-6-phosphatase of native microsomes, however, is rapidly inactivated by micromolar concentrations of TPCK as well as TLCK. In deoxycholate-modified microsomes both reagents do not affect glucose-6-phosphate hydrolysis. These results indicate that in the native, intact microsomal membrane glucose-6-phosphatase is not accessible to proteolytic attack from the cytoplasmic surface. The putative inhibitory effect of some trypsin or bacterial protease preparations on glucose-6-phosphatase of native microsomes observed most possibly is a result of contaminating agents as TPCK or TLCK.  相似文献   

5.
Airway secretion is maintained by specialized non-ciliated epithelial cells whose phenotype varies with their topographical location. In addition, specialized epithelial cells located in the airway contain the molecular machinery of chemoreceptive elements. Our aim has been to evaluate whether the secretory cells themselves possess a chemoreceptive capability, which requires the simultaneous presence of chemosensory and secretory mechanisms. We performed immunohistochemical analysis with antibodies against the Clara-cell-specific secretory proteins, CC10 and CC26, as secretory markers. As chemoreceptive markers, we employed antibodies against α-gustducin and phospholipase C beta 2 (PLCβ2), two components of the taste transduction pathway. We also attempted to characterize further the secretory cell type by using a marker of chloride secretion, cystic fibrosis transmembrane regulator (CFTR). We found α-gustducin localized in non-ciliated cells of the epithelium lining the trachea and bronchioles of adult rats, where it was also co-expressed with CC10 and CC26. Ultrastructural immunohistochemistry revealed α-gustducin in the apical cytoplasm of secretory cells, concentrated around and inside the granules. CFTR was also observed in a subpopulation of non-ciliated epithelial cells, co-localized with some α-gustducin- and PLCβ2-immunoreactive cells, at all levels of the airway epithelium. We conclude that non-ciliated epithelial cells of the rat airway express components of distinct signaling mechanisms and suggest that secretory events are driven by a molecular mechanism activated by the binding of luminal substances to G-protein-coupled receptors. This work was supported by the Italian Cystic Fibrosis Research Foundation (grant #2/2004).  相似文献   

6.
Summary The tracheal epithelium of the mouse is a single layer of columnar cells resting on a basement membrane. Many of the cell types resemble those of other species. However, goblet cells are rare and ciliated cells occur only in scattered patches. Submucosal glands are absent from all but the highest reaches of the airway.The major proportion of the epithelial cells are non-ciliated. These usually project into the lumen of the trachea. Large amounts of smooth endoplasmic reticulum and many secretory vesicles occur within the cytoplasm. Secretory activity of these cells may be either apocrine or merocrine and these cells may transform into other cell types.It is suggested that these non-ciliated cells are Clara cells and that the mouse tracheal epithelium may make a useful model for the study of this type of cell.  相似文献   

7.
Methylthioadenosine sulfoxide (MTAS), an oxidized derivative of the cell toxic metabolite methylthioadenosine has been used in elucidating the relevance of an interrelationship between the catalytic behavior and the conformational state of hepatic glucose-6-phosphatase and in characterizing the transmembrane orientation of the integral unit in the microsomal membrane. The following results were obtained: (1) Glucose 6-phosphate hydrolysis at 37 degrees C is progressively inhibited when native microsomes are treated with MTAS at 37 degrees C. In contrast, glucose 6-phosphate hydrolysis of the same MTAS-treated microsomes assayed at 0 degrees C is not inhibited. (2) Subsequent modification of the MTAS-treated microsomes with Triton X-114 reveals that glucose-6-phosphatase assayed at 37 degrees C as well as at 0 degrees C is inhibited. (3) Although excess reagent is separated by centrifugation and the MTAS-treated microsomes diluted with buffer before being modified with Triton the temperature-dependent effect of MTAS on microsomal glucose-6-phosphatase is not reversed at all. (4) In native microsomes MTAS is shown to inhibit glucose-6-phosphatase noncompetitively. The subsequent Triton-modification of the MTAS-treated microsomes, however, generates an uncompetitive type of inhibition. (5) Preincubation of native microsomes with MTAS completely prevents the inhibitory effect of 4,4'-diisothiocyanostilbene 2,2'-disulfonate (DIDS) as well as 4,4'-diazidostilbene 2,2'-disulfonate (DASS) on glucose-6-phosphatase. (6) Low molecular weight thiols and tocopherol protect the microsomal glucose-6-phosphatase against MTAS-induced inhibition. (7) Glucose-6-phosphatase solubilized and partially purified from rat liver microsomes is also affected by MTAS in demonstrating the same temperature-dependent behavior as the enzyme of MTAS-treated and Triton-modified microsomes. From these results we conclude that MTAS modulates the enzyme catalytic properties of hepatic glucose-6-phosphatase by covalent modification of reactive groups of the integral protein accessible from the cytoplasmic surface of the microsomal membrane. The temperature-dependent kinetic behavior of MTAS-modulated glucose-6-phosphatase is interpreted by the existence of distinct catalytically active enzyme conformation forms. Detergent-induced modification of the adjacent hydrophobic microenvironment additionally generates alterations of the conformational state leading to changes of the kinetic characteristics of the integral enzyme.  相似文献   

8.
Suuroia T  Aunapuu M  Arend A  Sépp E 《Tsitologiia》2002,44(7):656-660
The ultrastructure of oviduct epithelium of clinically healthy cows and 15 sows was investigated using scanning and transmission electron microscopy. In all parts of the oviduct, ciliated and non-ciliated epithelial cells are present, but their number varies in both the investigated animals in different regions of the oviduct, depending on the phase of the estrous cycle. In addition to ciliated cells with numerous cilia on their luminal surface, so-called pale ciliary cells were found in all parts of the oviduct of cows and sows. The cytoplasm of these cells is electron-lucent, their luminal surface carries few cilia and short microvilli. The apical cytoplasm contains species specific secretory granules, which means that these cells have features characteristic of both secretory and ciliated cells. It is suggested that the pale ciliated and non-ciliated secretory cells are functional stages of the same tubar epithelium cell, and that the transformation between these two cell types is regulated by functional requirements of the organ in different phases of the estrous cycle.  相似文献   

9.
Electron-microscopic examinations of the sturgeon gut were performed. Oesophageal goblet cells were abundant in the stratified epithelium. The ultrastructural features of the secretory granules of the oesophageal and intestinal goblet cells were quite similar to those of other vertebrates. Lobules of multilocular adipose tissue were observed in the deep tunica propriasubmucosa of the oesophagus, in close association with vasculature and large fibre bundles of myelinated and unmyelinated axons. Similarly composed nerve fibre bundles were observed in the cardiac stomach, too. The presence of myelinated axons is an unusual feature in the vertebrate enteric nervous system. Cardiac and fundic zones of the stomach showed an epithelium with columnar ciliated and non-ciliated cells, the latter equipped with fuzzy microvilli. Cells lining the tubular gastric proper glands were markedly granulated. Intestinal superficial epithelium was columnar and contained ciliated, as well as non-ciliated and goblet cells. In the tunica propria all over the intestine, the presence and ultrastructure of granulated cells was in addition described. Intraepithelial granulated leukocytes were seen throughout the alimentary canal. Various types of endocrine cells were seen both in the stomach and in the intestine, the size of their granules was measured and their ultrastructure described and compared to that of mammalian cell types.  相似文献   

10.
The phosphohydrolase component of the microsomal glucose-6-phosphatase system has been identified as a 36.5-kDa polypeptide by 32P-labeling of the phosphoryl-enzyme intermediate formed during steady-state hydrolysis. A 36.5-kDa polypeptide was labeled when disrupted rat hepatic microsomes were incubated with three different 32P-labeled substrates for the enzyme (glucose-6-P, mannose-6-P, and PPi) and the reaction terminated with trichloroacetic acid. Labeling of the phosphoryl-enzyme intermediate with [32P]glucose-6-P was blocked by several well-characterized competitive inhibitors of glucose-6-phosphatase activity (e.g. Al(F)-4 and Pi) and by thermal inactivation, and labeling was not seen following incubations with 32Pi and [U-14C]glucose-6-P. In agreement with steady-state dictates, the amount of [32P]phosphoryl intermediate was directly and quantitatively proportional to the steady-state glucose-6-phosphatase activity measured under a variety of conditions in both intact and disrupted hepatic microsomes. The labeled 36.5-kDa polypeptide was specifically immunostained by antiserum raised in sheep against the partially purified rat hepatic enzyme, and the antiserum quantitatively immunoprecipitated glucose-6-phosphatase activity from cholate-solubilized rat hepatic microsomes. [32P]Glucose-6-P also labeled a similar-sized polypeptide in hepatic microsomes from sheep, rabbit, guinea pig, and mouse and rat renal microsomes. The glucose-6-phosphatase enzyme appears to be a minor protein of the hepatic endoplasmic reticulum, comprising about 0.1% of the total microsomal membrane proteins. The centrifugation of sodium dodecyl sulfate-solubilized membrane proteins was found to be a crucial step in the resolution of radiolabeled microsomal proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

11.
Summary Glucose-6-phosphatase activity was measured in rat liver or pancreatic islet crude homogenates and microsomes. The data recorded in the liver were comparable to those reported in prior studies. However, in the islets, the hydrolysis of D-glucose 6-phosphate by disrupted microsomes represented, when expressed relative to the protein content, less than 2% of the value recorded in liver microsomes. Moreover, no phosphotransferase activity was detected in the islets. These findings impose reservation on both the presence of glucose-6-phosphatase in rat islets and its participation to stimulus-secretion coupling.  相似文献   

12.
Glucose-6-phosphatase is primarily a liver and kidney enzyme. This enzyme was studied in various tumors, however, glucose-6-phosphatase activity was found only in tumors of liver, kidney, or adrenal origin. Glucose-6-phosphatase activity was useful in identifying the tissue origin of extrarenal Wilms'. Metastatic tumors within the liver or kidney that originated from other tissues did not have glucose-6-phosphatase activity. Therefore, it is suggested that glucose-6-phosphatase can be used as a specific enzyme marker for tumors of liver and kidney origin.  相似文献   

13.
Glucose-6-phosphatase (EC 3.1.3.9) activity in human fetal liver remains constant at 8–28 nmoles/min per mg protein from the 8th week of gestation to at least week 28 and this value is approximately 25–35% of that found in the adult. This enzyme activity was well maintained for 2–3 days in organ culture of fetal liver explants. Incubation with dibutyryl cyclic AMP (0.1 mM) and theophylline (0.5 mM) increased glucose-6-phosphatase activity 4–8-fold within 24 h. Theophylline alone was ineffective, but markedly potentiated the effects of dibutyryl cyclic AMP. This increase in enzyme activity was completely abolished by simultaneous incubation with cycloheximide or actinomycin D. Insulin clearly decreased glucose-6-phosphatase activity in control tissues after 24 h incubation and tended to diminish the elevated glucose-6-phosphatase activity which resulted from pre-incubation with dibutyryl cyclic AMP.The smallest specimen obtained (36 mm crown-rump length = 6 weeks gestation) was capable of elevating glucose-6-phosphatase activity more than 3-fold in response to dibutyryl cyclic AMP incubation, suggesting that the human fetal liver has the competence to respond to hormonal agents at a very early stage of development.  相似文献   

14.
In order to determine the involvement of glucose-6-phosphatasein mucilage secretion by root cap cells, we have cytochemicallylocalized the enzyme in columella and peripheral cells of rootcaps of Zea mays. Glucose-6-phosphatase is associated with theplasmalemma and cell wall of columella cells. As columella cellsdifferentiate into peripheral cells and begin to produce andsecrete mucilage, glucose-6-phosphatase staining intensifiesand becomes associated with the mucilage and, to a lesser extent,the cell wall. Cells being sloughed from the cap are characterizedby glucose-6-phosphatase staining being associated with thevacuole and plasmalemma. These changes in enzyme localizationduring cellular differentiation in root caps suggest that glucose-6-phosphataseis involved in the production and/or secretion of mucilage byperipheral cells of Z. mays. Zea mays, corn, glucose-6-phosphatase, columella cell, peripheral cell, mucilage, secretion, cytochemistry  相似文献   

15.
Summary Changes occurring in the epithelium covering bronchus-associated lymphoid tissue (BALT) in the rat after several intratracheal administrations of horseradish peroxidase (HRP) were studied using morphological and ultrastructural methods. The epithelium is invaded by W3/ 25-positive (T-helper) lymphocytes, the BALT epithelial cells become Ia-positive and develop microvilli; there is an apparent loss of cilia. The number of non-ciliated cells in stimulated BALT increases. The non-ciliated cells can be subdivided into two cell types, one with electron-dense cytoplasm and cytoplasmic granules and the other without granules. The electron-density of the latter cell type is intermediate between that of the ciliated cells and that of the granulecontaining non-ciliated cells. The granule-containing cell types may be responsible for the uptake of antigens, while the other non-ciliated cell may be involved in the production of the secretory component and the passage of secretory IgA.Supported by a research grant from the Nederlands Astma Fonds  相似文献   

16.
The effect of ovarian hormones on the activities of glucose-6-phosphatase and alkaline phosphatase in the vaginal epithelium was studied in immature and ovariectomized rats, using ultracytochemical techniques. Comparative studies were done on normal rats at the luteal phase and on day 14 of pregnancy. Various vaginal cells show different degrees of response to progesterone and diethylstilbestrol (DES) with regard to glucose-6-phosphatase activity. Intense glucose-6-phosphatase activity was observed in the cisternae of granular endoplasmic reticulum (rER), Golgi saccules and vesicles, and nuclear envelope of both basal cells and stromal cells of progesterone treated rats, whereas in the basal cells and stromal cells of DES-treated and control animals the enzyme was totally lacking. Detectable glucose-6-phosphatase activity was also observed, however, in the rER cisternae and Golgi complex of keratohyalin-secreting squamous intermediate cells of the vaginal epithelium of DES-treated rats. Alkaline phosphatase was also found on the limiting membranes of secretory granules of mucocytes in animals at the luteal phase and during pregnancy. DES and progesterone in the doses used did not affect alkaline phosphatase activity in the rat vagina. Overall, progesterone enhances glucose-6-phosphatase activity in basal cells of the rat vagina prior to completion of mucification. Alkaline phosphatase was found in all cells involved in mucin secretion.  相似文献   

17.
The thermal stability of glucose-6-phosphatase in rat liver microsomes was examined in untreated and cholate-treated microsomes. Activity of the enzyme was measured with both glucose-6-P and mannose-6-P as substrates. Heat treatment did not cause glucose-6-phosphatase activity to decline to zero with a single rate constant in untreated microsomes. Instead, heat treatment produced an enzyme with a small residual activity that was stable. The residual level of activity was not stimulated by addition of detergent. In untreated microsomes the energies of activation for the processes of decay were different for glucose-6-phosphatase and mannose-6-phosphatase activities, suggesting that the rate-limiting steps for the hydrolysis of these compounds were different. Treatment of microsomes with detergent increased the rate constants for the thermal decay of glucose-6-phosphatase by about 150 times, and, in contrast to untreated microsomes, glucose-6-phosphatase and mannose-6-phosphatase decayed to zero with a single rate constant in cholate-treated microsomes. Also, rate constants for thermal inactivation of glucose-6-phosphatase and mannose-6-phosphatase were the same in cholate-treated microsomes. Removal of cholate increased the stability of glucose-6-phosphatase but did not regenerate the form of the enzyme present in untreated microsomes. The data for the stability of glucose-6-phosphatase under different conditions provide evidence that the enzyme can exist in at least five different stable states that are enzymatically active.  相似文献   

18.
The kinetics of rat liver glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase, EC 3.1.3.9) were studied with intact and detergent-disrupted microsomes from normal and diabetic rats. Glucose-6-P concentrations employed (12 microM to 1.0 mM) spanned the physiologic range. With the enzyme of intact microsomes from both groups, plots of v versus [glucose-6-P] were sigmoid. Hanes plots (i.e. [glucose-6-P]/v versus [glucose-6-P]) were biphasic (concave upwards). A Hill coefficient of 1.45 was determined with substrate concentrations between 12 and 133 microM. Disruption of microsomal integrity abolished these departures from classic kinetic behavior, indicating that sigmoidicity may result from cooperative interaction of glucose-6-P with the glucose-6-phosphatase system at the substrate translocase specific for glucose-6-P. With the enzyme from normal rats the [glucose-6-P] at which the enzyme was maximally sensitive to variations in [glucose-6-P] (which we term "Smax"), determined from plots of dv/d [glucose-6-P] versus [glucose-6-P], was in the physiologic range. The Smax of 0.13 mM corresponded well with the normal steady-state hepatic [glucose-6-P] of 0.16 mM, consistent with glucose-6-phosphatase's function as a regulatory enzyme. With the diabetic enzyme, in contrast, values were 0.30 and 0.07 mM for the Smax and steady-state level, respectively. We suggest that the decreasing sensitivity of glucose-6-phosphatase activity to progressively diminishing glucose-6-P concentration, inherent in its sigmoid kinetics, constitutes a mechanism for the preservation of a residual pool of glucose-6-P for other hepatic metabolic functions in the presence of elevated concentrations of glucose-6-phosphatase such as in diabetes.  相似文献   

19.
Synopsis Several phosphatase enzymes have been studied biochemically and cytochemically to ascertain whether there are ontogenic changes in level or location. Nucleoside monophosphatase (5-nucleotidase) and lysosomal acid phosphatase are low in foetal liver and, unlike glucose-6-phosphatase, are still quite low in neonatal liver. Bile canaliculi show strong staining for 5-nucleotidase in adult liver but not in foetal or neonatal liver. Nucleoside diand triphosphatase activities in foetal liver are already near half the adult level. The diphosphatase that is active towards UDP shows the same cytochemical locations in neonatal liver as in adult liver. Triphosphatase activity in foetal and neonatal liver is located largely in star-like cells, rather than in the bile canaliculi of parenchymal cells. Biochemical comparison of foetal, neonatal and adult liver has shown that inorganic pyrophosphatase (assayed without Mg2+) parallels glucose-6-phosphatase, but acid ribonuclease does not parallel acid phosphatase. In albino rats injected with thyroxine, glucose-6-phosphatase has shown a more marked increase in foetal liver than in adult liver, although the uptake of thyroxine seemed to be less. In hooded rats, foetal liver showed a negligible uptake of thyroxine and no rise in glucose-6-phosphatase.A. A. El-Aaser is on leave from the Faculty of Medicine, University of Cairo.  相似文献   

20.
The mechanism of activation of hepatic microsomal glucose-6-phosphatase (EC 3.1.3.9) by histone 2A has been investigated in both intact and disrupted microsomes. Histone 2A increased the Vmax and decreased the Km of glucose-6-phosphatase in intact microsomes but had no effect on glucose-6-phosphatase activity in disrupted microsomes. Histone 2A was shown to activate glucose-6-phosphatase in intact microsomes by disrupting the membrane vesicles and thereby allowing the direct measurement of the activity of the latent glucose-6-phosphatase enzyme. The study demonstrated that disrupting microsomes with histone 2A is an excellent method for directly assaying glucose-6-phosphatase activity as it poses none of the problems encountered with all of the previously used methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号