首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed mitotic dendritic epidermal T-cells (DETC) in the epidermis of C3H/He (Thy-1.2+) mice, using double immunoenzymatic labeling. Ear skin was incubated with 100 microM bromodeoxyuridine (BrdU) for 5 hr and then either directly studied or cultured for an additional 12 hr in BrdU-free medium. After BrdU labeling, with or without additional culture, epidermal sheets were obtained by ethylenediaminetetraacetic acid separation. The epidermal specimens were immunostained by the peroxidase method to visualize nuclear BrdU and then by the biotin-streptavidin-alkaline phosphatase method for surface Thy-1.2 antigen. In specimens processed immediately after BrdU labeling, a mean 3.0% of all basal cells were labeled with BrdU and a mean 1.1% of the BrdU-labeled cells were also positive for Thy-1.2. Moreover, a mean 2.1% of the DETC had incorporated BrdU. BrdU-labeled DETC had a variety of appearances; they were dendritic and round in the BrdU-treated specimens, while oval and paired cells were also found in the specimens after additional culture. These morphological changes of BrdU-labeled DETC demonstrate that resident DETC can become mother cells undergoing mitosis through the retraction of their dendrites, and it appears that DETC divide at a relatively high rate, i.e., up to 10% of the DETC may enter the S-phase of the cell cycle every 24 hr.  相似文献   

2.
Rat myoblast nuclei were labeled with various concentrations of bromodeoxyuridine (BrdU), an analogue of thymidine, for 24 or 48 hr. Almost every myoblast was labeled with BrdU at concentrations between 10(-7) M and 10(-5) M. When the cells were labeled with 0.5 microM or more, the percentage of labeled cells remained over 90% and 80% at 2 and 5 days, respectively. However, when the cells were labeled with BrdU concentration lower than 10(-7) M the percentage of labeled nuclei decreased more rapidly with time. The BrdU-labeled cells were mixed with an unlabeled population to determine whether their capacity to fuse was reduced. At a BrdU concentration of 0.5 x 10(-6) M, labeled myoblasts fused to a similar extent as unlabeled myoblasts, and a high percentage of marked cells were still perceptively labeled after 5 days. In contrast, the fusion capacity of myoblasts incubated with more than 10(-6) M BrdU was inhibited after only few rounds of DNA synthesis. These myoblasts were eventually able to fuse, however, when the BrdU diminished in the DNA due to cell division. These results indicate that labeling with BrdU at a concentration of 0.5 x 10(-6) M and an incorporation time of 48 hr is optimal to obtain perceptible immunocytochemical staining without affecting myoblast fusion. Such BrdU immunolabeling could be used as a nuclear marker for hybridization studies.  相似文献   

3.
BACKGROUND: Cell proliferation is often studied using the incorporation of bromodeoxyuridine (BrdU). Immunohistochemical staining is then used to detect BrdU in the nucleus. To circumvent the observer bias and labor-intensive nature of manually counting BrdU-labeled nuclei, an automated topographical cell proliferation analysis method is developed. METHODS: Sections stained with fluorescein-labeled anti-BrdU and counterstained with To-Pro-3 are scanned using confocal laser scanning microscopy (CLSM). For every point in the image, the nucleus density of BrdU-labeled nuclei and the total nucleus density of the neighborhood of that point are calculated from the BrdU and the To-Pro-3 signal, respectively. The ratio of these densities gives an indication of the amount of cell proliferation at that point. The automated measure is validated by comparing it with the ratio of BrdU-stained nuclei to the total number of nuclei obtained from a manual count. RESULTS: A positive correlation is found between the automated measure and the ratios calculated from the manual counting (r = 0.86, P < 0.001). Calculating the topographical cell proliferation using the automated method is faster and does not suffer from interobserver variability. CONCLUSIONS: Automated topographical cell proliferation analysis is a fast method to objectively find differences in cell proliferation within a tissue. This can be visualized by a topographical map that corresponds to the tissue under study.  相似文献   

4.
Extraintestinal growth of fecal bacteria can impair accurate assessment of watershed health. Anaerobic fecal bacteria belonging to the order Bacteroidales are attractive candidates for fecal source tracking because they have host-specific distributions and do not grow well in the presence of high oxygen concentrations. Growth of general and human-specific fecal Bacteroidales marker organisms in environmental samples (sewage) and persistence of the corresponding genetic markers were investigated using bromodeoxyuridine (BrdU) DNA labeling and immunocapture, followed by PCR detection. Background amplification of unlabeled controls occasionally occurred when a high number of PCR cycles was used. By using fluorescent detection of PCR products obtained after 15 cycles, which was determined to be quantitative, we enriched for BrdU-labeled DNA and did not detect unlabeled DNA. By using pure cultures of Bacteroides vulgatus, the ability of Bacteroidales bacteria to take up and incorporate BrdU into nascent DNA was confirmed. Fecal Bacteroidales organisms took up and incorporated BrdU into DNA during growth. In sewage incubated aerobically at the in situ temperature, Bacteroidales genetic marker sequences persisted for at least 24 h and Bacteroidales fecal bacteria grew for up to 24 h as well. Detection by PCR using a low, quantitative cycle number decreased the sensitivity of the assay such that we were unable to detect fecal Bacteroidales human-specific marker sequences in unlabeled or BrdU-labeled fractions, even when fluorescent detection was used. Using 30 PCR cycles with unlabeled fractions, human-specific Bacteroidales sequences were detected, and they persisted for up to 24 h in sewage. These data support the utility of BrdU labeling and immunocapture followed by length heterogeneity PCR or fluorescent detection using low numbers of PCR cycles. However, this method may not be sensitive enough to identify cells that are present at low densities in aquatic environments.  相似文献   

5.
Recent studies suggest that gastrin regulates parietal cell maturation. We asked whether it also regulates parietal cell life span and migration along the gland. Dividing cells were labeled with 5'-bromo-2'-deoxyuridine (BrdU), and parietal cells were identified by staining with Dolichos biflorus lectin. Cells positive for D. biflorus lectin and BrdU were reliably identified 10-30 days after BrdU injection in mice in which the gastrin gene had been deleted by homologous recombination (Gas-KO) and wild-type (C57BL/6) mice. The time course of labeling was similar in the two groups. The distribution of BrdU-labeled parietal cells in wild-type mice was consistent with migration to the base of the gland, but in Gas-KO mice, a higher proportion of BrdU-labeled cells was found more superficially 20 and 30 days after BrdU injection. Conversely, in transgenic mice overexpressing gastrin, BrdU-labeled parietal cells accounted for a higher proportion of the labeled pool in the base of the gland 10 days after BrdU injection. Gastrin, therefore, stimulates movement of parietal cells along the gland axis but does not influence their life span.  相似文献   

6.
To determine the role of brain-derived neurotrophic factor (BDNF) in the enhancement of hippocampal neurogenesis resulting from dietary restriction (DR), heterozygous BDNF knockout (BDNF +/-) mice and wild-type mice were maintained for 3 months on DR or ad libitum (AL) diets. Mice were then injected with bromodeoxyuridine (BrdU) and killed either 1 day or 4 weeks later. Levels of BDNF protein in neurons throughout the hippocampus were decreased in BDNF +/- mice, but were increased by DR in wild-type mice and to a lesser amount in BDNF +/- mice. One day after BrdU injection the number of BrdU-labeled cells in the dentate gyrus of the hippocampus was significantly decreased in BDNF +/- mice maintained on the AL diet, suggesting that BDNF signaling is important for proliferation of neural stem cells. DR had no effect on the proliferation of neural stem cells in wild-type or BDNF +/- mice. Four weeks after BrdU injection, numbers of surviving labeled cells were decreased in BDNF +/- mice maintained on either AL or DR diets. DR significantly improved survival of newly generated cells in wild-type mice, and also improved their survival in BDNF +/- mice, albeit to a lesser extent. The majority of BrdU-labeled cells in the dentate gyrus exhibited a neuronal phenotype at the 4-week time point. The reduced neurogenesis in BDNF +/- mice was associated with a significant reduction in the volume of the dentate gyrus. These findings suggest that BDNF plays an important role in the regulation of the basal level of neurogenesis in dentate gyrus of adult mice, and that by promoting the survival of newly generated neurons BDNF contributes to the enhancement of neurogenesis induced by DR.  相似文献   

7.
Bromodeoxyuridine (BrdU) immunohistochemistry is the method of choice for labeling newly generated cells in the brain. Most BrdU studies utilize paraformaldehyde-fixed brain tissue because of its compatibility with both BrdU and other immunohistochemical methods. However, stronger fixation is required for electron microscopic studies, and unfixed tissue is needed for biochemical and molecular studies. Because there are no systematic studies comparing the effects of different fixatives on BrdU immunohistochemistry in brain tissue, we compared BrdU immunohistochemical methods in brain tissue fixed with 4% paraformaldehyde, a mixed glutaraldehyde-paraformaldehyde fixative for electron microscopy, and unfixed tissue from brains perfused only with buffer and flash frozen. After optimizing immunostaining protocols, qualitative assessments of light microscopic diaminobenzidine labeling and of double-label immunofluorescence with confocal microscopy demonstrated excellent BrdU labeling in each of the three groups. Quantitative stereological assessment of the number of BrdU-labeled cells in rat dentate gyrus showed no significant difference in the number of labeled cells detected with each perfusion protocol. Additionally, we developed a protocol to visualize BrdU-labeled cells in the electron microscope with adequate preservation of fine structure in both rat and monkey brain.  相似文献   

8.
Attachment of the extracellular matrix to a substratum is important for fibroblast survival and proliferation in three-dimensional in vitro culture systems. We hypothesized that wound matrix attachment in a wound splinting model would modulate wound cell proliferation in vivo. Male rats were excisionally wounded on the dorsum, and a splint was sutured to the wound edge. In one experiment (N = 12), 6 rats were desplinted on day 5, and then all were sacrificed 24 h later, 6 h after 5-bromo-2'-deoxyuridine (BrdU) injection. In the second experiment (N = 18), 6 rats each were desplinted, desplinted with wound edge release, or not disturbed, followed by BrdU injection and sacrifice 24 h later. BrdU-labeled nuclei were quantified on frozen sections of granulation tissue, cut at three different levels. In the first experiment, the percentage of BrdU-positive nuclei per high power field (hpf) in the splinted vs. desplinted animals was 6.15 +/- 2.45 (S.D.) vs. 3.03 +/- 1.58%* p<0.001, ANOVA. In the second experiment, the number of BrdU-positive per hpf was 33.1 +/- 17.4 vs. 14.5 +/- 17.1 vs. 10.2 +/- 9.1* (splinted vs. desplinted vs. desplinted/released); *p<0.001 [analysis of variance (ANOVA)]. Removal of the wound splint decreased the rate of BrdU-labeled cells in the granulation tissue by approximately 50%; complete disruption of wound matrix attachment may have decreased this rate even further. Wound cell proliferation is modulated by lateral attachment of the wound matrix.  相似文献   

9.
Cell kinetics of human tumors by in vitro bromodeoxyuridine labeling   总被引:4,自引:0,他引:4  
We labeled active S-phase cells in primary breast carcinomas with a modified 5-bromo-2'-deoxyuridine (BrdU) procedure using a silver-enhanced colloidal gold visualization step. Separate samples of 29 tumors were labeled with BrdU or tritiated thymidine ([3H]-dThd), and the labeling indices (LI) from the two methods were equivalent (Spearman's correlation coefficient = 0.96). Three breast carcinomas were incubated in various mixes of both BrdU and [3H]-dThd and developed sequentially for each. Paired photomicrographs showed that the same nuclei were labeled by either precursor. The in vitro method yielded LIs similar to those reported after in vivo pulse BrdU labeling for tumors of the central nervous system. The BrdU LI correlated significantly (r = 0.76, p less than 0.001) with % S-phase by DNA flow cytometry in 33 breast carcinomas. The BrdU labeling method is simpler and more rapid than the [3H]-dThd procedure (1-2 days for completion for the former, 7-10 days for the latter), and it provides an equivalent measurement of proliferative index.  相似文献   

10.
OBJECTIVE: To test the feasibility of in situ DNA quantitation of adherent cells' nuclei by fluorescence imaging, preserving chromatin structure and to follow-up S phase, in relation to DNA content, in order to assess the precision of DNA measurements. STUDY DESIGN: Double labeling experiments involved total DNA staining with Hoechst 33342 and BrdU immunostaining (after either Br photolysis and DNA strand break labeling by terminal transferase or acid denaturation) to detect replicating DNA. An epifluorescence microscope was used, images captured with a CCD camera and quantitative total DNA measurements done in 12 bits with IPLab software. BrdU results were related to DNA content on an individual cell basis. Cell cycle analyses were run with Imastat software (developed in the laboratory) on Hoechst-stained cells and on double labeled cells. RESULTS: In cells progressing through the cycle, as assessed by BrdU, a corresponding increase in DNA content was measured. Early S differed from G1 (P < .05). Imastat analyses gave a CV for GI peak of 6-7%. CONCLUSION: Quantitative fluorescence imaging allows a sensitive determination of DNA content for adherent-cell nuclei in situ. Topologic analyses of nuclear components will be possible in relation to DNA content.  相似文献   

11.
To investigate the evolutionary conservation of higher order nuclear architecture previously described for mammalian cells we have analyzed the nuclear architecture of the simple polyp Hydra. These diploblastic organisms have large nuclei (8–10 m) containing about 3×109 bp of DNA organized in 15 chromosome pairs. They belong to the earliest metazoan phylum and are separated from mammals by at least 600 million years. Single and double pulse labeling with halogenated nucleotides (bromodeoxyuridine, iododeoxyuridine and chlorodeoxyuridine) revealed striking similarities to the known sequence of replication labeling patterns in mammalian nuclei. These patterns reflect a persistent nuclear arrangement of early, mid-, and late replicating chromatin foci that could be identified during all stages of interphase over at least 5–10 cell generations. Segregation of labeled chromatids led after several cell divisions to nuclei with single or a few labeled chromosome territories. In such nuclei distinct clusters of labeled chromatin foci were separated by extended nuclear areas with non-labeled chromatin, which is typical of a territorial arrangement of interphase chromosomes. Our results indicate the conservation of fundamental features of higher order chromatin arrangements throughout the evolution of metazoan animals and suggest the existence of conserved mechanism(s) controlling this architecture.Abbreviations CT Chromosome territory - BrdU Bromodeoxyuridine - IdU Iododeoxyuridine - CldU Chlorodeoxyuridine Communicated by E.A. Nigg  相似文献   

12.
5-bromo-2-deoxyurudine (BrdU) can be used as a methodological tool for in vivo investigations following in vitro prelabeling of isolated stem cells for subsequent cell tracking within the recipient host. The objective of this study was to determine how useful BrdU may be as a labeling modality for adipose derived stem cells (ASC) by examining BrdU toxicity, BrdU intracellular stability, and potential effects on ASC differentiation. Porcine and human ASC (pASC and hASC, respectively) were labeled with BrdU at 5 or 10 μM for 2, 6, 24, and 48 h. BrdU toxicity and stability over time in monolayer cultures, in 3-D collagen scaffolds implanted to a porcine model and after thawing from long-term storage were evaluated by MTT assays and immunohistochemistry. ASC differentiation was evaluated by Oil Red O staining. BrdU was not cytotoxic at all tested concentrations and incubation times. BrdU color intensity within each cell and the number of ASC labeled with BrdU decreased as a function of both incubation time and BrdU concentrations. Labeling intensities decreased over time and were undetectable after 6 passages for pASC and 4 passages for hASC. In 3-D scaffolds, BrdU-labeled ASC were identifiable after 90 days of in vitro cultures and for 30 days in a porcine model. BrdU did not prevent preadipocyte differentiation and BrdU labeling was still detectable after subsequent thawing after long-term storage of ASC. BrdU is an excellent candidate reagent to label and track ASC that will allow distinction between BrdU-labeled donor cells and host cells. The data provides a foundation for conducting future tissue engineering projects using BrdU-labeled ASC.  相似文献   

13.
In the mammalian brain, adult neurogenesis has been found to occur primarily in the subventricular zone (SVZ) and dentate gyrus of the hippocampus (DG) and to be influenced by both exogenous and endogenous factors. In the present study, we examined the effects of male exposure or social isolation on neurogenesis in adult female prairie voles (Microtus ochrogaster). Newly proliferated cells labeled by a cell proliferation marker, 5-bromo-2'-deoxyuridine (BrdU), were found in the SVZ and DG, as well as in other brain areas, such as the amygdala, hypothalamus, neocortex, and caudate/putamen. Two days of male exposure significantly increased the number of BrdU-labeled cells in the amygdala and hypothalamus in comparison to social isolation. Three weeks later, group differences in BrdU labeling generally persisted in the amygdala, whereas in the hypothalamus, the male-exposed animals had more BrdU-labeled cells than did the female-exposed animals. In the SVZ, 2 days of social isolation increased the number of BrdU-labeled cells compared to female exposure, but this difference was no longer present 3 weeks later. We have also found that the vast majority of the BrdU-labeled cells contained a neuronal marker, indicating neuronal phenotypes. Finally, group differences in the number of cells undergoing apoptosis were subtle and did not seem to account for the observed differences in BrdU labeling. Together, our data indicate that social environment affects neuron proliferation in a stimulus- and site-specific manner in adult female prairie voles.  相似文献   

14.
Extraintestinal growth of fecal bacteria can impair accurate assessment of watershed health. Anaerobic fecal bacteria belonging to the order Bacteroidales are attractive candidates for fecal source tracking because they have host-specific distributions and do not grow well in the presence of high oxygen concentrations. Growth of general and human-specific fecal Bacteroidales marker organisms in environmental samples (sewage) and persistence of the corresponding genetic markers were investigated using bromodeoxyuridine (BrdU) DNA labeling and immunocapture, followed by PCR detection. Background amplification of unlabeled controls occasionally occurred when a high number of PCR cycles was used. By using fluorescent detection of PCR products obtained after 15 cycles, which was determined to be quantitative, we enriched for BrdU-labeled DNA and did not detect unlabeled DNA. By using pure cultures of Bacteroides vulgatus, the ability of Bacteroidales bacteria to take up and incorporate BrdU into nascent DNA was confirmed. Fecal Bacteroidales organisms took up and incorporated BrdU into DNA during growth. In sewage incubated aerobically at the in situ temperature, Bacteroidales genetic marker sequences persisted for at least 24 h and Bacteroidales fecal bacteria grew for up to 24 h as well. Detection by PCR using a low, quantitative cycle number decreased the sensitivity of the assay such that we were unable to detect fecal Bacteroidales human-specific marker sequences in unlabeled or BrdU-labeled fractions, even when fluorescent detection was used. Using 30 PCR cycles with unlabeled fractions, human-specific Bacteroidales sequences were detected, and they persisted for up to 24 h in sewage. These data support the utility of BrdU labeling and immunocapture followed by length heterogeneity PCR or fluorescent detection using low numbers of PCR cycles. However, this method may not be sensitive enough to identify cells that are present at low densities in aquatic environments.  相似文献   

15.
We examined patterns of cell proliferation in the auditory midbrain (torus semicircularis) of the bullfrog, Rana catesbeiana, over larval and early postmetamorphic development, by visualizing incorporation of 5-bromo-2'-deoxyuridine (BrdU) in cycling cells. At all developmental stages, BrdU-labeled cells were concentrated around the optic ventricle. BrdU-labeled cells also appeared within the torus semicircularis itself, in a stage-specific manner. The mitotic index, quantified as the percent of BrdU-positive cells outside the ventricular zone per total cells available for label, varied over larval development. Mitotic index was low in hatchling, early larval, and late larval stages, and increased significantly in deaf period, metamorphic climax, and froglet stages. Cell proliferation was higher in metamorphic climax than at other stages, suggesting increased cell proliferation in preparation for the transition from an aquatic to an amphibious existence. The change in mitotic index over development did not parallel the change in the total numbers of cells available for label. BrdU incorporation was additionally quantified by dot-blot assay, showing that BrdU is available for label up to 72 h postinjection. The pattern of change in cell proliferation in the torus semicircularis differs from that in the auditory medulla (dorsal medullary nucleus and superior olivary nucleus), suggesting that cell proliferation in these distinct auditory nuclei is mediated by different underlying mechanisms.  相似文献   

16.
In cold-blooded animals, lost sensory hair cells can be replaced via a process of regenerative cell proliferation of epithelial supporting cells. In contrast, in mammalian cochlea, receptor (hair) cells are believed to be produced only during embryogenesis; after maturity, sensory or supporting cell proliferation or regeneration are thought to occur neither under normal conditions nor after trauma. Using bromodeoxyuridine (BrdU) as a proliferation marker, we have assessed cell proliferation activity in the mature organ of Corti in the cochlea of young guinea pigs following severe damage to the outer hair cells induced by kanamycin sulfate and ethacrynic acid. Although limited, we have found BrdU-labeled nuclei in the regions of Deiters cells when BrdU is given for 3 days or longer. When BrdU is given for 10 days, at least one labeled nucleus can be observed in the organ of Corti in approximately half of the ears; proliferating cells typically appear as paired daughters, with one nucleus being displaced away from the basement membrane to the position expected of the hair cells. Double-staining with antibodies to cytokeratin, vimentin, and p27 have shown that the BrdU-labeled nuclei are located in cells phenotypically similar to Deiters cells. Most of the uptake of BrdU occurs 3–5 days following ototoxic insult, and the number of BrdU-labeled cells does not decrease until 30 days following insult. These findings indicate that Deiters cells in the mature mammalian cochlea maintain a limited competence to re-enter the cell cycle and proliferate after hair cell injury, and that they can survive at least for 1 month.This work was supported by the Ministry of Health, Labour, and Welfare, Japan (grants 12120101, 15110201) and by the Ministry of Education, Culture, Sports, Science, and Technology, Japan (grant 13470357) to T.Y.  相似文献   

17.
Immunohistochemical assessment of 5-bromo-2-deoxyuridine (BrdU) in tissue sections is a widely used method to evaluate cell proliferation in vivo. However, this method requires time-consuming preparation of paraffin sections and laborious counting of BrdU-labeled nuclei on multiple sections. Here, we report the development of a rapid and reliable method to quantitate BrdU incorporation in intestinal and liver tissues using a dot-blot method. In vivo models of colon or liver proliferation were used to analyze the usefulness and reliability of this new method. Mice were killed after BrdU injection, and genomic DNA was isolated from the tissues, denatured, and dot-blotted onto a nitrocellulose membrane. The incorporated BrdU was detected with a BrdU monoclonal antibody, and the signal intensity was densitometrically quantified. Results were compared with BrdU index determined by conventional immunohistochemistry on the same tissue samples. The patterns of colonic BrdU incorporation during fasting and refeeding, measured by the dot-blotting method and the immunohistochemical method, were similar. The BrdU incorporation in the regenerating liver after partial hepatectomy, evaluated by these two different methods, showed a strong correlation (R(2) = 0.91, P < 0.01). In addition, the inhibition of colon proliferation by the phosphoinositol 3-kinase inhibitor wortmannin was demonstrated by this dot-blotting method. In conclusion, the dot-blotting technique described in this report provides an accurate, more efficient, and possibly more reliable method for the assessment of in vivo proliferation compared with conventional immunohistochemical determination of BrdU-labeling index.  相似文献   

18.
Insulin-like growth factor I (IGF-I) has been shown to increase the proportion of embryos forming blastocysts and the number of inner cell mass cells in human and other mammalian preimplantation embryos. Here we examined whether the increased cell number resulted from increased cell division or decreased cell death. Normally fertilized, Day 2 human embryos of good morphology were cultured to Day 6 in glucose-free Earle's balanced salt solution supplemented with 1 mM glutamine, with (n = 42) and without (n = 45) 1.7 nM IGF-I. Apoptotic cells in Day 6 blastocysts were identified using terminal deoxynucleotidyl dUTP terminal transferase (TUNEL) labeling to detect DNA fragmentation and 4'-6-diamidino-2-phenylindole (DAPI) counterstain to evaluate nuclear morphology. The number of nuclei and extent of DNA and nuclear fragmentation was assessed using laser scanning confocal microscopy. IGF-I significantly increased the proportion of embryos developing to the blastocyst stage from 49% (control) to 74% (+IGF-I) (P < 0.05). IGF-I also significantly decreased the mean proportion of apoptotic nuclei from 16.3 +/- 2.9% (-IGF-I) to 8.7 +/- 1.4% (+IGF-I) (P < 0.05). The total number of cells remained similar between both groups (61.7 +/- 4.6 with IGF-I; 54.5 +/- 5.1 without IGF-I). The increased number of blastocysts combined with reduced cell death suggests that IGF-I is rescuing embryos in vitro which would otherwise arrest and acting as a survival factor during preimplantation human development.  相似文献   

19.
Cows may provide insights into mammary development that are not easily obtained using mouse models. Mammary growth in control and estrogen-treated calves was investigated to evaluate general patterns of proliferation and relationship to estrogen receptor (ER) expression. After in vivo labeling with bromodeoxyuridine (BrdU), serial histological sections of mammary tissue were used to generate three-dimensional reconstructions. BrdU-labeled cells were present throughout the highly branched terminal ducts. ER and progesterone receptors (PR) were colocalized in nuclei of ductal epithelial cells. However, basal cells and epithelial cells that were located in the central region of epithelial cords and those that lined the lumen of patent ducts were ER- and PR-negative, as were stromal cells. Cells along the basal portion of the epithelium were not myoepithelial. ER in mammary epithelial cells but not stromal cells is analogous to patterns in human breast but contrasts with localization in murine mammary gland. After estrogen stimulation, 99% of BrdU-labeled (and Ki67-labeled) epithelial cells were ER-negative. Data suggest that proliferation in response to estrogen treatment was initiated within ER-positive epithelial cells of the developing mammary gland and the signal was propagated in paracrine fashion to stromal elements and ER-negative epithelial cells.  相似文献   

20.
The use of bromodeoxyuridine (BrdU) and subsequent immunocytochemical visualization for studying cell proliferation in plant meristems was investigated in Allium cepa L. root-tips. We describe the optimization of an indirect immunoperoxidase method for detecting incorporation of this DNA precursor in pulse-labeled cells. The basic object of this study is to quantify the extent to which the fraction of S-phase cells can reliably be estimated in asynchronous populations. A matrix of parallel labeling schedules with tritiated-thymidine or BrdU was developed, and the labeling indices provided by autoradiography or immunocytochemistry were compared. Thus, 0.5 mM BrdU assured saturation S-phase labeling after an exposure time of 30 min, and the mean length of the S-phase determined under such conditions was similar to that previously reported for this plant system. Interestingly, Feulgen staining did not interfere with subsequent detection of the BrdU probe. This allowed comparative evaluations of the nuclear DNA content by Feulgenmicrodensitometry and the position of a given cell in G1, S or G2 compartments. We also explored the possibility of quantifying BrdU-incorporation in single nuclei by densitometry measurement of the peroxidase label.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号