首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CaMKII (calcium/calmodulin-stimulated protein kinase II) is a multifunctional protein kinase that regulates normal neuronal function. CaMKII is regulated by multi-site phosphorylation, which can alter enzyme activity, and targeting to cellular microdomains through interactions with binding proteins. These proteins integrate CaMKII into multiple signalling pathways, which lead to varied functional outcomes following CaMKII phosphorylation, depending on the identity and location of the binding partner. A new phosphorylation site on CaMKII (Thr253) has been identified in vivo. Thr253 phosphorylation controls CaMKII purely by targeting, does not effect enzyme activity, and occurs in response to physiological and pathological stimuli in vivo, but only in CaMKII molecules present in specific cellular locations. This new phosphorylation site offers a potentially novel regulatory mechanism for controlling functional responses elicited by CaMKII that are restricted to specific subcellular locations and/or certain cell types, by controlling interactions with proteins that are expressed in the cell at that location.  相似文献   

2.
Postsynaptic densities (PSDs) isolated from porcine cerebral cortices are large aggregates consisting of more than 30 different proteins. Inductively coupled plasma-mass spectrometric analyses revealed that isolated PSDs contained zinc at a concentration of 4.1 nmol per mg protein. Treatment with 8 m urea lead to dissociation of the PSDs into small components and, concomitantly, depletion of most of their bound zinc. After removal of the urea by dialysis, urea-dissociated PSD proteins did not reassemble into aggregates by themselves. Adding ZnCl2 to urea-treated PSD samples resulted in the assembly of urea-dissociated proteins into large aggregates with morphology and protein composition closely resembling those of the original PSDs. Mg2+, Ca2+, Co2+, Cd2+, Cu2+, Mn2+, Fe3+, K+ and Na+ ions at higher concentrations also induced the aggregation of urea-dissociated PSD protein. The structures of the K+-, Na+-, Mg2+- and Ca2+-induced aggregates were distinct from that of the original PSDs. Our results indicate that the structure of the PSD could be disassembled and reassembled under in vitro conditions. They further suggest that Zn2+ ions, by binding to certain zinc-binding proteins, play an important role in the formation and maintenance of the structure of the PSD.  相似文献   

3.
The postsynaptic density (PSD) is an electron-dense structure located at the synaptic contacts between neurons. Its considerable complexity includes cytoskeletal and scaffold proteins, receptors, ion channels and signaling molecules, in line with the role of PSDs in signal transduction and processing. The phosphorylation state of components of the PSD is central to synaptic transmission and is known to play a role in synaptic plasticity, learning and memory. The presence of a range of kinases and phosphatases in the PSD defines potential key players in this context. However, the substrates that these enzymes target have not been fully identified to date. We analyzed the protein composition of purified PSD samples from adult mouse brains by strong cation exchange chromatography fractionation of a tryptic digest followed by nano-reverse phase liquid chromatography coupled with electrospray ionization-quadrupole time of flight tandem mass spectrometry. This led to the identification of 244 proteins. To gain an insight into the phosphoproteome of the PSD we then purified phosphorylated tryptic peptides by immobilized metal ion affinity chromatography. This approach for the specific enrichment of phosphopeptides resulted in the identification of 42 phosphoproteins in the PSD preparation, 39 of which are known PSD components. Here we present a total of 83 in vivo phosphorylation sites.  相似文献   

4.
Phosphorylation of the NMDA receptor by Src-family tyrosine kinases has been implicated in the regulation of receptor function. We have investigated the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B by exogenous Src and Fyn and compared this to phosphorylation by tyrosine kinases associated with the postsynaptic density (PSD). Phosphorylation of the receptor by exogenous Src and Fyn was dependent upon initial binding of the kinases to PSDs via their SH2-domains. Src and Fyn phosphorylated similar sites in NR2A and NR2B, tryptic peptide mapping identifying seven and five major tyrosine-phosphorylated peptides derived from NR2A and NR2B, respectively. All five tyrosine phosphorylation sites on NR2B were localized to the C-terminal, cytoplasmic domain. Phosphorylation of NR2B by endogenous PSD tyrosine kinases yielded only three tyrosine-phosphorylated tryptic peptides, two of which corresponded to Src phosphorylation sites, and one of which was novel. Phosphorylation-site specific antibodies identified NR2B Tyr1472 as a phosphorylation site for intrinsic PSD tyrosine kinases. Phosphorylation of this site was inhibited by the Src-family-specific inhibitor PP2. The results identify several potential phosphorylation sites for Src in the NMDA receptor, and indicate that not all of these sites are available for phosphorylation by kinases located within the structural framework of the PSD.  相似文献   

5.
Previous studies have suggested that the localization of the NMDA receptor NR1 subunit may be determined by the splice variant form of NR1 present. Functional studies have also supported selective targeting of NR2A and NR2B to synaptic and extrasynaptic populations, respectively. We set out to determine whether rat cortical and cerebellar NR1 splice variants and NR2 subunits are differentially localized to the postsynaptic density. Using western blot techniques, we measured the percentage of NR1 containing each cassette and the enrichment of the different cassettes and other proteins in the preparations. The results indicate that: (1) no single cassette of NR1 is differentially enriched in the postsynaptic densities and (2) the NR2A and NR2B subunits are similarly enriched at the synapse. The enrichment profiles of postsynaptic density-associated proteins demonstrated similar enrichment levels for postsynaptic density (PSD)-95, the NMDA receptor subunits, chapsyn-110, and the CaMKII alpha subunit. However, synaptophysin, SAP-102, and the GABA(A) receptor beta subunit exhibited lower enrichment levels compared to PSD-95. Additionally, cerebellar but not cortical PSDs exhibited significantly lower enrichment of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) GluR1. Thus, although postsynaptic densities are highly enriched in synaptic proteins, there appears to be no selective incorporation of specific NR1 splice variants or NR2 subunits into this structure.  相似文献   

6.
Calmodulin-Dependent Protein Phosphorylation in Synaptic Junctions   总被引:8,自引:4,他引:4  
Synaptic junctions (SJs) from rat forebrain were examined for Ca2+/calmodulin (CaM)-dependent kinase activity and compared to synaptic plasma membrane (SPM) and postsynaptic density (PSD) fractions. The kinase activity in synaptic fractions was examined for its capacity to phosphorylate endogenous proteins or exogenous synapsin I, in the presence or absence of Ca2+ plus CaM. When assayed for endogenous protein phosphorylation, SJs contained approximately 25-fold greater amounts of Ca2+/CAM-dependent kinase activity than SPMs, and fivefold more activity than PSDs. When kinase activities were measured by phosphorylation of exogenous synapsin I, SJs contained fourfold more activity than SPMs, and 10-fold more than PSDs. The phosphorylation of SJ proteins of 60- and 50-kilodalton (major PSD protein) polypeptides were greatly stimulated by Ca2+/CaM; levels of phosphorylation for these proteins were 23- and 17-fold greater than basal levels, respectively. Six additional proteins whose phosphorylation was stimulated 6-15-fold by Ca2+/CAM were identified in SJs. These proteins include synapsin I, and proteins of 240, 207, 170, 140, and 54 kilodaltons. The 54-kilodalton protein is a highly phosphorylated form of the major PSD protein and the 170-kilodalton component is a cell-surface glycoprotein of the postsynaptic membrane that binds concanavalin A. The CaM-dependent kinase in SJ fractions phosphorylated endogenous phosphoproteins at serine and/or threonine residues. Ca2+-dependent phosphorylation in SJ fractions was strictly dependent on exogenous CaM, even though SJs contained substantial amounts of endogenous CaM (15 micrograms CaM/mg SJ protein). Exogenous CaM, after being functionally incorporated into SJs, was rapidly removed by sequential washings. These observations suggest that the SJ-associated CaM involved in regulating Ca2+-dependent protein phosphorylation may be in dynamic equilibrium with the cytoplasm. These findings indicate that a brain CaM-dependent kinase(s) and substrate proteins are concentrated at SJs and that CaM-dependent protein phosphorylation may play an important role in mechanisms that underlie synaptic communication.  相似文献   

7.
Increases in reactive oxygen species and mis-regulation of calcium homeostasis are associated with various physiological conditions and disease states including aging, ischemia, exposure to drugs of abuse, and neurodegenerative diseases. In aged animals, this is accompanied by a reduction in oxidative repair mechanisms resulting in increased methionine oxidation of the calcium signaling protein calmodulin in the brain. Here, we show that oxidation of calmodulin results in an inability to: (1) activate CaMKII; (2) support Thr(286) autophosphorylation of CaMKII; (3) prevent Thr(305/6) autophosphorylation of CaMKII; (4) support binding of CaMKII to the NR2B subunit of the NMDA receptor; and (5) compete with alpha-actinin for binding to CaMKII. Moreover, oxidized calmodulin does not efficiently bind calcium/calmodulin-dependent protein kinase II (CaMKII) in rat brain lysates or in vitro. These observations contrast from past experiments performed with oxidized calmodulin and the plasma membrane calcium ATPase, where oxidized calmodulin binds to, and partially activates the PMCA. When taken together, these data suggest that oxidative stress may perturb neuronal and cardiac function via a decreased ability of oxidized calmodulin to bind, activate, and regulate the interactions of CaMKII.  相似文献   

8.
Ca2+/calmodulin-dependent protein kinase II (CaMKII), the most abundant kinase at the postsynaptic density (PSD), is expected to be involved in activity-induced regulation of synaptic properties. CaMKII is activated when it binds calmodulin in the presence of Ca2+ and, once autophosphorylated on T-286/7, remains active in the absence of Ca2+ (autonomous form). In the present study we used a quantitative mass spectrometric strategy (iTRAQ) to identify sites on PSD components phosphorylated upon CaMKII activation. Phosphorylation in isolated PSDs was monitored under conditions where CaMKII is: (1) mostly inactive (basal state), (2) active in the presence of Ca2+, and (3) active in the absence of Ca2+. The quantification strategy was validated through confirmation of previously described autophosphorylation characteristics of CaMKII. The effectiveness of phosphorylation of major PSD components by the activated CaMKII in the presence and absence of Ca2+ varied. Most notably, autonomous activity in the absence of Ca2+ was more effective in the phosphorylation of three residues on SynGAP. Several PSD scaffold proteins were phosphorylated upon activation of CaMKII. The strategy adopted allowed the identification, for the first time, of CaMKII-regulated sites on SAPAPs and Shanks, including three conserved serine residues near the C-termini of SAPAP1, SAPAP2, and SAPAP3. Involvement of CaMKII in the phosphorylation of PSD scaffold proteins suggests a role in activity-induced structural re-organization of the PSD.  相似文献   

9.
Synaptic plasticity is an important mechanism that underlies learning and cognition. Protein phosphorylation by kinases and dephosphorylation by phosphatases play critical roles in the activity-dependent alteration of synaptic plasticity. In this study, we report that Wip1, a protein phosphatase, is essential for long-term potentiation (LTP) and long-term depression (LTD) processes. Wip1-deletion suppresses LTP and enhances LTD in the hippocampus CA1 area. Wip1 deficiency-induced aberrant elevation of CaMKII T286/287 and T305 phosphorylation underlies these dysfunctions. Moreover, we showed that Wip1 modulates CaMKII dephosphorylation. Wip1?/? mice exhibit abnormal GluR1 membrane expression, which could be reversed by the application of a CaMKII inhibitor, indicating that Wip1/CaMKII signaling is crucial for synaptic plasticity. Together, our results demonstrate that Wip1 phosphatase plays a vital role in regulating hippocampal synaptic plasticity by modulating the phosphorylation of CaMKII.  相似文献   

10.
Dendritic spines are highly specialized actin-rich structures on which the majority of excitatory synapses are formed in the mammalian CNS. SPIN90 is an actin-binding protein known to be highly enriched in postsynaptic densities (PSDs), though little is known about its function there. Here, we show that SPIN90 is a novel binding partner for Shank proteins in the PSD. SPIN90 and Shank co-immunoprecipitate from brain lysates and co-localize in postsynaptic dendrites and act synergistically to mediate spine maturation and spine head enlargement. At the same time, SPIN90 causes accumulation of Shank and PSD-95 within dendritic spines. In addition, we found that the protein composition of PSDs in SPIN90 knockout mice is altered as is the actin cytoskeleton of cultured hippocampal SPIN90 knockout neurons. Taken together, these findings demonstrate that SPIN90 is a Shank1b binding partner and a key contributor to the regulation of dendritic spine morphogenesis and brain function.  相似文献   

11.
Here we report the structure of the widely utilized calmodulin (CaM)-dependent protein kinase II (CaMKII) inhibitor KN93 bound to the Ca2+-sensing protein CaM. KN93 is widely believed to inhibit CaMKII by binding to the kinase. The CaM-KN93 interaction is significant as it can interfere with the interaction between CaM and it's physiological targets, thereby raising the possibility of ascribing modified protein function to CaMKII phosphorylation while concealing a CaM–protein interaction. NMR spectroscopy, stopped-flow kinetic measurements, and x-ray crystallography were used to characterize the structure and biophysical properties of the CaM-KN93 interaction. We then investigated the functional properties of the cardiac Na+ channel (NaV1.5) and ryanodine receptor (RyR2). We find that KN93 disrupts a high affinity CaM-NaV1.5 interaction and alters channel function independent of CaMKII. Moreover, KN93 increases RyR2 Ca2+ release in cardiomyocytes independent of CaMKII. Therefore, when interpreting KN93 data, targets other than CaMKII need to be considered.  相似文献   

12.
Phospholamban (PLB) is a sarcoplasmic reticulum (SR) protein that when phosphorylated at Ser16 by PKA and/or at Thr17 by CaMKII increases the affinity of the SR Ca2+ pump for Ca2+. PLB is therefore, a critical regulator of SR function, myocardial relaxation and myocardial contractility. The present study was undertaken to examine the status of PLB phosphorylation after ischemia and reperfusion and to provide evidence about the possible role of the phosphorylation of Thr17 PLB residue on the recovery of contractility and relaxation after a period of ischemia. Experiments were performed in Langendorff perfused hearts from Wistar rats. Hearts were submitted to a protocol of global normothermic ischemia and reperfusion. The results showed that (1) the phosphorylation of Ser16 and Thr17 residues of PLB increased at the end of the ischemia and the onset of reperfusion, respectively. The increase in Thr17 phosphorylation was associated with a recovery of relaxation to preischemic values. This recovery occurred in spite of the fact that contractility was depressed. (2) The reperfusion-induced increase in Thr17 phosphorylation was dependent on Ca2+ entry to the cardiac cell. This Ca2+ influx would mainly occur by the coupled activation of the Na+/H+ exchanger and the Na+/Ca2+ exchanger working in the reverse mode, since phosphorylation of Thr17 was decreased by inhibition of these exchangers and not affected by blockade of the L-type Ca2+ channels. (3) Specific inhibition of CaMKII by KN93 significantly decreased Thr17 phosphorylation. This decrease was associated with an impairment of myocardial relaxation. The present study suggests that the phosphorylation of Thr17 of PLB upon reflow, may favor the full recovery of relaxation after ischemia. (Mol Cell Biochem 263: 131–136, 2004)  相似文献   

13.
Zinc (Zn2+) is believed to play a relevant role in the physiology and pathophysiology of the brain. Hence, Zn2+ homeostasis is critical and involves different classes of molecules, including Zn2+ transporters. The ubiquitous Zn2+ transporter‐1 (ZNT‐1) is a transmembrane protein that pumps cytosolic Zn2+ to the extracellular space, but its function in the central nervous system is not fully understood. Here, we show that ZNT‐1 interacts with GluN2A‐containing NMDA receptors, suggesting a role for this transporter at the excitatory glutamatergic synapse. First, we found that ZNT‐1 is highly expressed at the hippocampal postsynaptic density (PSD) where NMDA receptors are enriched. Two‐hybrid screening, coimmunoprecipitation experiments and clustering assay in COS‐7 cells demonstrated that ZNT‐1 specifically binds the GluN2A subunit of the NMDA receptor. GluN2A deletion mutants and pull‐down assays indicated GluN2A(1390–1464) domain as necessary for the binding to ZNT‐1. Most importantly, ZNT‐1/GluN2A complex was proved to be dynamic, since it was regulated by induction of synaptic plasticity. Finally, modulation of ZNT‐1 expression in hippocampal neurons determined a significant change in dendritic spine morphology, PSD‐95 clusters and GluN2A surface levels, supporting the involvement of ZNT‐1 in the dynamics of excitatory PSD.

  相似文献   


14.
The function of the uterine smooth muscle in gestation and parturition is affected by a variety of hormones and biomolecules, some of which alter the intracellular levels of cAMP and Ca2+. Since the activity of smooth muscle MLCK has been shown to be modulated by phosphorylation, the effect of this modification of pregnant sheep myometrium (psm) MLCK by the catalytic subunit of cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) was studied. In contrast to other smooth muscle MLCK reported, PKA incorporates 2.0–2.2 moles phosphate into a mole of psm MLCK both in the presence and absence of Ca2+-calmodulin. Modification of serine residues inhibited the activity of the enzyme. PKC also incorporated 2.0–2.1 moles of phosphate per mole psmMLCK under both conditions but had no effect on the MLCK activity. Sequential phosphorylation by PKC and PKA incorporated 3.8–4.1 moles phosphate suggesting that the amino acid residues modified by the two kinases are different. Phosphoamino acid analysis of the MLCK revealed that PKC phosphorylated serine and threonine residues. The double reciprocal plots of the enzyme activity and calmodulin concentrations showed that the Vmax of the reaction is not altered by phosphorylation by PKA but the calmodulin concentration require for half-maximal activation is increased about 4-fold. Only 10 out of 17 monoclonal antibodies to various regions of the turkey gizzard MLCK cross-reacted with psmMLCK suggesting structural differences between these enzymes. Comparison of the deduced amino acid sequence of the cDNA encoding the C-terminal half of the psmMLCK molecule showed that while cgMLCK and psmMLCK are highly homologous, a number of nonconservative substitutions are present, particularly near the PKA phosphrylation site B (S828).  相似文献   

15.
1. The unique biochemical properties of Ca2+/calmodulin (CaM)-dependent protein kinase II have made this enzyme one of the paradigmatic models of the forever searched memory molecule.2. In particular, the central participation of CaMKII as a sensor of the Ca2+ signals generated by activation of NMDA receptors after the induction of long-term plastic changes, has encouraged the use of pharmacological, genetic, biochemical, and imaging tools to unveil the role of this kinase in the acquisition, consolidation, and expression of different types of memories.3. Here we review some of the more exciting discoveries related to the mechanisms involved in CaMKII activation and synaptic plasticity.  相似文献   

16.
Summary The regulation of cellular volume upon exposure to hypoosmotic stress is accomplished by specific plasma membrane permeability changes that allow the efflux of certain intracellular solutes (osmolytes). The mechanism of this membrane permeability regulation is not understood; however, previous data implicate Ca2+ as an important component in the response. The regulation of protein phosphorylation is a pervasive aspect of celllular physiology that is often Ca2+ dependent. Therefore, we tested for osmotically induced protein phosphorylation as a possible mechanism by which Ca2+ may mediate osmotically dependent osmolyte efflux. We have found a rapid increase in32Pi incorporation into two proteins in clam blood cell ghosts after exposure of the intact cells to a hypoosmotic medium. The osmotic component of the stress, not the ionic dilution, was the stimulus for the phosphorylations. The osmotically induced phosphorylation of both proteins was significantly inhibited when Ca2+ was omitted from the medium, or by the calmodulin antagonist. chlorpromazine. These results correlate temporally with cell volume recovery and osmolyte (specifically free amino acid) efflux. The two proteins that become phosphorylated in response to hypoosmotic stress may be involved in the regulation of plasma membrane permeability to organic solutes, and thus. contribute to hypoosmotic cell volume regulation.  相似文献   

17.
Vasodilator-stimulated phosphoprotein (VASP) is an actin regulatory protein that functions in adhesion and migration. In epithelial cells, VASP participates in cell–cell adhesion. At the molecular level, VASP drives actin bundling and polymerization. VASP activity is primarily regulated by phosphorylation. Three physiologically relevant phosphorylation sites significantly reduce actin regulatory activity and are targeted by several kinases, most notable Abl and protein kinases A and G (PKA and PKG). AMP-dependent kinase (AMPK) is best characterized as a cellular sensor of ATP depletion, but also alters actin dynamics in epithelial cells and participates in cell polarity pathways downstream of LKB1. While little is known about how AMPK direct changes in actin dynamics, AMPK has been shown to phosphorylate VASP at one of these three well-characterized PKA/PKG phosphorylation sites. Here we show that phosphorylation of VASP by AMPK occurs at a novel site, serine 322, and that phosphorylation at this site alters actin filament binding. We also show that inhibition of AMPK activity results in the accumulation of VASP at cell–cell adhesions and a concomitant increase in cell–cell adhesion.  相似文献   

18.
Understanding of the molecular basis of long‐term fear memory (fear LTM) formation provides targets in the treatment of emotional disorders. Ca2+/calmodulin‐dependent protein kinase II (CaMKII) is one of the key synaptic molecules involved in fear LTM formation. There are two endogenous inhibitor proteins of CaMKII, CaMKII Nα and Nβ, which can regulate CaMKII activity in vitro. However, the physiological role of these endogenous inhibitors is not known. Here, we have investigated whether CaMKII Nβ protein expression is regulated after contextual fear conditioning or exposure to a novel context. Using a novel CaMKII Nβ‐specific antibody, CaMKII Nβ expression was analysed in the naïve mouse brain as well as in the amygdala and hippocampus after conditioning and context exposure. We show that in naïve mouse forebrain CaMKII Nβ protein is expressed at its highest levels in olfactory bulb, prefrontal and piriform cortices, amygdala and thalamus. The protein is expressed both in dendrites and cell bodies. CaMKII Nβ expression is rapidly and transiently up‐regulated in the hippocampus after context exposure. In the amygdala, its expression is regulated only by contextual fear conditioning and not by exposure to a novel context. In conclusion, we show that CaMKII Nβ expression is differentially regulated by novelty and contextual fear conditioning, providing further insight into molecular basis of fear LTM.  相似文献   

19.
J. Neurochem. (2011) 119, 64-77. ABSTRACT: Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. However, their molecular identities remain elusive. Further, how they interact with the well-established signaling specialization, the postsynaptic density (PSD), is poorly understood. We previously detected a number of conventional PSD proteins in detergent-resistant membranes (DRMs). Here, we have performed liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) analyses on postsynaptic membrane rafts and PSDs. Our comparative analysis identified an extensive overlap of protein components in the two structures. This overlapping could be explained, at least partly, by a physical association of the two structures. Meanwhile, a significant number of proteins displayed biased distributions to either rafts or PSDs, suggesting distinct roles for the two postsynaptic specializations. Using biochemical and electron microscopic methods, we directly detected membrane raft-PSD complexes. In vitro reconstitution experiments indicated that the formation of raft-PSD complexes was not because of the artificial reconstruction of once-solubilized membrane components and PSD structures, supporting that these complexes occurred in vivo. Taking together, our results provide evidence that postsynaptic membrane rafts and PSDs may be physically associated. Such association could be important in postsynaptic signal integration, synaptic function, and maintenance.  相似文献   

20.
The effect of platelet-activating factor (PAF) on protein tyrosine phosphorylation was studied in rat hippocampal slices. PAF caused an increase in the tyrosine phosphorylation of two phosphoproteins, which we identified by immunoprecipitation assays as the focal adhesion kinase p125FAK and crk-associated substrate p130Cas. The PAF effect was time- and dose-dependent. In addition, the involvement of PAF receptor was demonstrated by using PCA-4248, a specific receptor antagonist. When NO synthase was inhibited by NG-monomethyl-L-arginine (L-NMA), PAF-stimulated protein tyrosine phosphorylation was inhibited. In conclusion, our results indicate that PAF increased the tyrosine phosphorylation of both p125FAK and p130Cas proteins by the production of NO in hippocampus, suggesting that PAF may play a role in the functioning of this cerebral area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号