首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermediate reticular formation (IRt) subjacent to the rostral (gustatory) nucleus of the solitary tract (rNST) receives projections from the rNST and appears essential to the expression of taste-elicited ingestion and rejection responses. We used whole cell patch-clamp recording and calcium imaging to characterize responses from an identified population of prehypoglossal neurons in the IRt to electrical stimulation of the rNST in a neonatal rat pup slice preparation. The calcium imaging studies indicated that IRt neurons could be activated by rNST stimulation and that many neurons were under tonic inhibition. Whole cell patch-clamp recording revealed mono- and polysynaptic projections from the rNST to identified prehypoglossal neurons. The projection was primarily excitatory and glutamatergic; however, there were some inhibitory GABAergic projections, and many neurons received excitatory and inhibitory inputs. There was also evidence of disinhibition. Overall, bath application of GABA(A) antagonists increased the amplitude of excitatory currents, and, in several neurons, stimulation of the rNST systematically decreased inhibitory currents. We have hypothesized that the transition from licks to gapes by natural stimuli, such as quinine monohydrochloride, could occur via such disinhibition. We present an updated dynamic model that summarizes the complex synaptic interface between the rNST and the IRt and demonstrates how inhibition could contribute to the transition from ingestion to rejection.  相似文献   

2.
Du  J; Bradley  RM 《Chemical senses》1998,23(6):683-688
Responses of acutely isolated neurons from the rostral nucleus of the solitary tract (rNST) to GABA receptor agonists and antagonists were investigated using whole-cell recording in current clamp mode. The isolated neurons retain their morphology and can be divided into multipolar, elongate and ovoid cell types. Most rNST neurons (97%), including all three cell types, respond to GABA with membrane hyperpolarization and a reduction in input resistance. The GABA(A) receptor agonist muscimol reduces neuronal input resistance in a concentration-dependent manner, whereas the GABA(B) receptor agonist baclofen had no effect on any of the neurons tested. The GABA and muscimol reversal potentials were both found to be -75 mV Both the GABA competitive antagonist picrotoxin and the GABA(A) receptor antagonist bicuculline block the effect of GABA in a concentration-dependent manner. These results suggest that GABA activates all neurons in the rNST and that inhibitory synaptic activity is important in brainstem processing of gustatory and somatosensory information.   相似文献   

3.
The biophysical and morphological characteristics of acutelyisolated neurons from the rostral nucleus of the solitary tract(rNST) were investigated under current clamp conditions andcompared with the results obtained from neurons recorded inbrain slices. The passive membrane properties of the isolatedneurons were similar to rNST neurons in brain slices and theneurons maintained their morphological characteristics althoughtheir dendritic tree was truncated. The isolated neurons alsoretained their characteristic repetitive firing properties.In addition we also noted developmental changes in the intrinsicmembrane properties of the isolated neurons, such as a shorteningin action potential duration, decrease in membrane time constantand input resistance, that occurred when these parameters werecompared in neurons isolated from young (5–10 days) andolder animals. These enzymatically dispersed neurons thereforeretained both the membrane properties and morphology observedin the intact brainstem and in vitro brain slice preparation.The use of this isolated neuron preparation provides a basisfor further study of rNST neurobiology. Chem. Senses 21: 729–737,1996  相似文献   

4.
To date, only one study has examined responses to monosodium glutamate (MSG) from gustatory neurons in the rat geniculate ganglion and none to free fatty acids. Accordingly, we recorded single-cell responses from geniculate ganglion gustatory neurons in anesthetized male rats to MSG and linoleic acid (LA), as well as to sucrose, NaCl, citric acid, and quinine hydrochloride. None of the 52 neurons responded to any LA concentration. In contrast, both narrowly tuned groups of gustatory neurons (sucrose specialists and NaCl specialists) responded to MSG, as did 2 of the broadly tuned groups (NaCl generalist(I) and acid generalists). NaCl-generalist(II) neurons responded only to the highest MSG concentration and only at low rates. No neuron type responded best to MSG; rather, responses to 0.1 M MSG were significantly less than those to NaCl for Na(+) -sensitive neurons and to sucrose for sucrose specialists. Interestingly, most Na(+) -sensitive neurons responded to 0.3 M MSG at levels comparable with those to 0.1 M NaCl, whereas sucrose specialists responded to 0.1 M MSG despite being unresponsive to NaCl. These results suggest that the stimulatory effect of MSG involves activation of sweet- or salt-sensitive receptors. We propose that glutamate underlies the MSG response of sucrose specialists, whereas Na(+) -sensitive neurons respond to the sodium cation. For the latter neuron groups, the large glutamate anion may reduce the driving force for sodium through epithelial channels on taste cell membranes. The observed concentration-dependent responses are consistent with this idea, as are cross-adaptation studies using 0.1 M concentrations of MSG and NaCl in subsets of these Na(+) -sensitive neurons.  相似文献   

5.
Intraoral infusions of bitter tastants activate expression of the immediate-early gene c-Fos in neurons located in the medial third of the rostral nucleus of the solitary tract (rNST). The distribution of these neurons is distinct from that activated by sour or sweet stimuli. Bitter stimuli are also distinctive because of their potency for eliciting gaping, an oral reflex that functions to actively reject potentially toxic substances. Glossopharyngeal nerve transection profoundly reduces, whereas decerebration spares, the bitter-evoked Fos-like immunoreactivity (FLI) pattern and gaping, implicating the medial rNST as a substrate for the sensory limb of oral rejection. The present experiment tested this hypothesis using microstimulation (100 Hz, 0.2 ms, 5-40 microA) to activate the rNST in awake rats. NST microstimulation elicited licking and gaping, and gaping was evoked from a restricted rNST region. The results indicated some topographic organization in sites effective for evoking gaping, but, in direct conflict with the hypothesis, lateral sites farther from bitter-evoked FLI were more effective than medial sites centered closer to FLI-expressing neurons. The gape-effective sites resemble locations of bitter-responsive neurons recently observed in neurophysiological recordings. These results indicate that bitter-responsive rNST neurons critical for triggering gaping may not express FLI and imply an alternate function for bitter-responsive neurons that do.  相似文献   

6.
家蚕味觉电生理反应的个体差异   总被引:4,自引:1,他引:4  
为探讨家蚕Bombyx mori人工饲料饲养发育不齐的生理原因,从同一蚕品种中挑选出对人工饲料摄食性不同的个体,用电生理学方法测定了下颚瘤状体味觉感器对4种代表性物质(蔗糖、肌醇、大豆粉提取物和柠檬酸)的电生理反应。结果表明,栓锥感器Ss-Ⅰ对蔗糖等促食物质的反应以及栓锥感器Ss-Ⅱ对大豆粉提取物等阻食物质的反应,均存在明显的个体差异。在临界浓度下,低摄食性个体的放电脉冲频率显著高于高摄食性个体。说明低摄食性蚕的味觉反应比高摄食性蚕敏感。  相似文献   

7.
SYNOPSIS. Gas exchange in pulmonate snails of the family Helicidaeoccurs through a highly vascularized diffusion lung known asthe mantle. The extent of ventilation of the mantle dependsupon the duration and size of opening of an occlusible poreknown as the pneumostome. In Helix aspersa and Helix pomatia,pneumostomal size and frequency of opening are exquisitely sensitiveto CO2. Respiratory CO2 chemosensitivity resides in a discreteregion of the subesophageal ganglia. The discharge pattern ofmany neurons in the chemoreceptor area changes during stimulationwith CO2. However, the electrophysiological response to CO,stimulation alone does not discriminate between CO2 chemoreceptorcells and CO2-insensitive neurons active in the pneumostomalresponse to CO2. We identified a subset of CO2-sensitive neuronsfrom the larger population of neurons active during CO2 stimulation.The action potential discharge frequency of CO2 chemosensoryneurons increased in response to CO2 stimulation. An increaseddischarge frequency of CO2-sensitive neurons was associatedwith increased pneumostomal opening, and both the size and thefrequency of pneumostomal opening increased during CO2 stimulation.Injecting depolarizing current into individual chemosensoryneurons elicited opening of the pneumostome in the absence ofCO2. Action potential generation in response to CO2 was independentof synaptic transmission. Removal of individual CO2-sensitivecells or inhibition of action potential generation in CO2-sensitivecells reduced or eliminated pneumostomal responses to CO2. CO2sensitivity in chemoreceptor cells required extracellular calcium,but not sodium. Substituting barium for calcium supported chemoreceptoractivity. In summary, we have identified respiratory related,chemosensory neurons that are CO2 sensitive in the absence ofsynaptic input.  相似文献   

8.
Smith  DV; Li  CS 《Chemical senses》1998,23(2):159-169
The effects of gamma-aminobutyric acid (GABA) and the GABAA receptor antagonist bicuculline methiodide (BICM) on the activity of taste- responsive neurons in the nucleus of the solitary tract (NST) were examined electrophysiologically in urethane-anesthetized hamsters. Single neurons in the NST were recorded extracellularly and drugs (21 nl) were microinjected into the vicinity of the cell via a multibarrel pipette. The response of each cell was recorded to lingual stimulation with 0.032 M NaCl, 0.032 M sucrose, 0.0032 M citric acid and 0.032 M quinine hydrochloride (QHCl). Forty-six neurons were tested for the effects of GABA; the activity of 29 cells (63%) was inhibited by 5 mM GABA. Whether activity was elicited in these cells by repetitive anodal current stimulation (25 microA, 0.5 s, 0.1 Hz) of the tongue (n = 13 cells) or the cells were spontaneously active (n = 13 cells), GABA produced a dose-dependent (1, 2 and 5 mM) decrement in activity. Forty- seven NST neurons were tested for the effects of BICM on their responses to chemical stimulation of the tongue; the responses of 28 cells (60%) were enhanced by 10 mM BICM. The gustatory responses of 26 of these cells were tested with three concentrations (0.2, 2 and 10 mM) of BICM, which produced a dose-dependent increase in both spontaneous activity and taste-evoked responses. Nine of these neurons were sucrose- best, seven were NaCl-best, eight were acid-best and two responded best to QHCl. The responses to all four tastants were enhanced, with no difference among neuron types. For 18 cells that were tested with two or more gustatory stimuli, BICM increased their breadth of responsiveness to their two most effective stimuli. These data show that approximately 60% of the taste-responsive neurons in the rostral NST are inhibited by GABA and/or subject to a tonic inhibitory influence, which is mediated by GABAA receptors. The modulation of these cells by GABA provides a mechanism by which the breadth of tuning of the cell can be sharpened. Modulation of gustatory activity following a number of physiological changes could be mediated by such a GABAergic circuit.   相似文献   

9.
Smith DV  Ye MK  Li CS 《Chemical senses》2005,30(5):421-434
Previous studies have shown a modulatory influence of limbic forebrain areas, such as the central nucleus of the amygdala and lateral hypothalamus, on the activity of taste-responsive cells in the nucleus of the solitary tract (NST). The bed nucleus of the stria terminalis (BST), which receives gustatory afferent information, also sends descending axons to the NST. The present studies were designed to investigate the role of the BST in the modulation of NST gustatory activity. Extracellular action potentials were recorded from 101 taste-responsive cells in the NST of urethane-anesthetized hamsters and analyzed for a change in excitability following bilateral electrical stimulation of the BST. The response of NST taste cells to stimulation of the BST was predominately inhibitory. Orthodromic inhibitory responses were observed in 29 of 101 (28.7%) NST taste-responsive cells, with four cells inhibited bilaterally. An increase in excitability was observed in seven of the 101 (6.9%) NST taste cells. Of the 34 cells showing these responses, 25 were modulated by the ipsilateral BST and 15 by the contralateral; four were inhibited bilaterally and two inhibited ipsilaterally and excited contralaterally. The duration of inhibitory responses (mean = 177.9 ms) was significantly longer than that of excitatory responses (35.4 ms). Application of subthreshold electrical stimulation to the BST during taste trials inhibited or excited the taste responses of every BST-responsive NST cell tested with this protocol. NST neurons that were most responsive to sucrose, NaCl, citric acid or quinine hydrochloride were all affected by BST stimulation, although citric acid-best cells were significantly more often modulated and NaCl-best less often modulated than expected by chance. These results combine with excitatory and inhibitory modulation of NST neurons by the insular cortex, lateral hypothalamus and central nucleus of the amygdala to demonstrate extensive centrifugal modulation of brainstem gustatory neurons.  相似文献   

10.
Motor nerve net (MNN) neurons in the jellyfish Cyanea capillata communicate with one another by way of fast, bidirectional excitatory chemical synapses. As is the case with almost all identified chemical synapses in cnidarians, the identity of the neurotransmitter at these synapses is unclear. MNN neurons are large enough for stable intracellular recordings. This, together with the fact that they can be exposed, providing unlimited access to them and to their synapses, prompted a study of the action of a variety of neurotransmitter candidates, including those typically associated with fast synapses in higher animals. Only the amino acids taurine and β-alanine produced physiological responses consistent with those of the normal EPSP in these cells. Moreover, chemical analysis revealed that both taurine and β-alanine are present in the neurons and released by depolarization. These various findings strongly suggest that either or both of these amino acids, or a closely related compound is the neurotransmitter at the fast chemical synapses between MNN neurons.  相似文献   

11.
Taste-responsive cells in the nucleus of the solitary tract (NST) either project to the parabrachial nuclei (PbN) of the pons, through which taste information is transmitted to forebrain gustatory nuclei, or give rise to axons terminating locally within the medulla. Numerous anatomical studies clearly demonstrate a substantial projection from the rostral NST, where most taste-responsive cells are found, to the PbN. In contrast, previous electrophysiological studies in the rat have shown that only a small proportion (21-45%) of taste-responsive NST cells are antidromically activated from the PbN, suggesting that less than half the cells recorded from the NST are actually involved in forebrain processing of gustatory information. In the present experiment we investigated the projections from the NST to the PbN electrophysiologically in urethane anesthetized hamsters. Responses of 101 single neurons in the rostral NST were recorded extracellularly following lingual stimulation with 32 mM NaCl, sucrose and quinine hydrochloride (QHCl) and 3.2 mM citric acid. The taste-responsive region of the PbN was identified electrophysiologically and stimulated with a concentric bipolar electrode to antidromically activate each NST cell. Of the 101 taste-responsive NST cells, 81 (80.2%) were antidromically activated from the ipsilateral PbN. The mean firing rates to taste stimulation and the spontaneous activity of these projection neurons were significantly greater than those of non-projecting cells. Every sucrose-best neuron in the sample projected to the PbN. The mean conduction velocity of the 23 QHCl-best neurons was significantly lower than that of the other 58 PbN projection neurons, suggesting that the most QHCl-responsive cells are a subset of smaller neurons. These data show that a large majority of NST cells responsive to taste stimulation of the anterior tongue project to the gustatory subdivisions of the PbN and that these cells have the most robust responses to gustatory stimulation.  相似文献   

12.
Although the reciprocal projections between the bed nucleus of the stria terminalis (BNST) and the gustatory parabrachial nuclei (PbN) have been demonstrated neuroanatomically, there is no direct evidence showing that the projections from the PbN to the BNST carry taste information or that descending inputs from the BNST to the PbN modulate the activity of PbN gustatory neurons. A recent electrophysiological study has demonstrated that the BNST exerts modulatory influence on taste neurons in the nucleus of the solitary tract (NST), suggesting that the BNST may also modulate the activity of taste neurons in the PbN. In the present study, we recorded from 117 taste-responsive neurons in the PbN and examined their responsiveness to electrical stimulation of the BNST bilaterally. Thirteen neurons (11.1%) were antidromically invaded from the BNST, mostly from the ipsilateral side (12 cells), indicating that a subset of taste neurons in the PbN project their axons to the BNST. The BNST stimulation induced orthodromic responses on most of the PbN neurons: 115 out of 117 (98.3%), including all BNST projection units. This descending modulation on the PbN gustatory neurons was exclusively inhibitory. We also confirmed that activation of this efferent inhibitory projection from the BNST reduces taste responses of PbN neurons in all units tested. The BNST is part of the neural circuits that involve stress-associated feeding behavior. It is also known that brain stem gustatory nuclei, including the PbN, are associated with feeding behavior. Therefore, this neural substrate may be important in the stress-elicited alteration in ingestive behavior.  相似文献   

13.
中华蜜蜂化学感受蛋白基因Acer-CSP1克隆与表达特征分析   总被引:3,自引:0,他引:3  
化学感受蛋白(chemosensory proteins, CSPs)是昆虫化学感受系统中重要的组成部分之一。本研究克隆了中华蜜蜂Apis cerana cerana化学感受蛋白基因Acer-CSP1, 其核苷酸全长351 bp (GenBank登录号为FJ157352), 编码116个氨基酸残基, 预测蛋白分子量为13.85 kD, 等电点为4.89, 且含有4个保守的半胱氨酸残基, 均符合昆虫CSPs的一般特征, 且与意蜂CSP1基因具有99.1%的相似性, 与其他昆虫也有45.3%~68.0%的相似性。利用2-ΔΔCt法及绝对定量法的real-time PCR技术对Acer-CSP1在中蜂不同器官表达特征进行了研究, 得出的一致结论为Acer-CSP1显著水平地高丰度表达于中华蜜蜂触角, 其次大量表达于头部。由于触角为中华蜜蜂最主要的嗅觉器官, 而头部则具有发达的感觉神经系统和味觉系统, 这也提示Acer-CSP1极有可能参与中华蜜蜂的嗅觉以及其他化学感受功能。  相似文献   

14.
Free amino acids and cholinergic enzymes were investigated in the cerebellum of reeler and weaver mice in an attempt to identify the neurotransmitter characteristic of the granule cell population and to clarify any neurotransmitter abnormalities of their pre- and postsynaptic neurons induced by their depletion. The data indicate that glutamic acid may be the neurotransmitter of the granule cells. Pre- and postsynaptic neurotransmitter activity seemed not to be markedly altered in cerebellar granule cell dysgenesis.  相似文献   

15.
Helicoverpa assulta and Helicoverpa armigera are sibling species with different host-plant ranges. We have previously reported electrophysiological and behavioral responses of H.armigera to sugars and amino acids. Here we describe a parallel study performed on H. assulta and compare the results obtained with the two species. In females, fourteen gustatory chemosensilla, identified on one ventrolateral side of the fifth tarsomere were stimulated with sucrose, glucose, fructose, maltose, myo-inositol, and the twenty common amino acids, using the tip-recording technique. The taste receptor neurons in eight chemosensilla were identified sensitive to the sugars, myo-inositol, Lys, Glu, Arg, Trp, and Ser which all induced proboscis extension reflex (PER) when tarsi were stimulated. There was a positive correlation between electrophysiological activities and PER responses triggered by sucrose. No stimulatory effect on oviposition was observed with sugar or amino acid mixtures. In males, three chemosensilla showed responses to the four sugars, but generally weaker than in females. The major difference of the two species was the variety of amino acids triggering electrophysiological responses. The stimulatory effect of sugars and amino acids on H.assulta was also generally weaker than that on H. armigera.  相似文献   

16.
We examined the responses of some gustatory neurons in various contact-chemoreceptor sensilla of second-instar larvae of the spruce budworm. These included the L1 and L2 sensilla on the maxillary palp, and the LST and MST sensilla on the galea. Our objective was to determine whether there were differences in the physiological characteristics of individual neurons between the early and late larval instars. Changes were observed in both some sugar-sensitive and amino acid-sensitive neurons. We also confirmed the presence of a water-sensitive neuron in the L2 sensillum. Our findings are discussed in relation to changes that occur during the development of both the host plant and the insect. To our knowledge, this is the first paper to examine the responses from contact-chemoreceptor sensilla of very young second-instar caterpillar larvae.  相似文献   

17.
Evidence suggests that GABA might mediate the inhibitory influence of centrifugal inputs on taste-evoked responses in the parabrachial nucleus (PBN). Previous studies show that activation of the gustatory cortex (GC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH) inhibits PBN taste responses, GABAergic neurons are present in these forebrain regions, and GABA reduces the input resistance of PBN neurons. The present study investigated the expression of glutamic acid decarboxylase immunoreactivity (GAD_67 ir) in GC, BNST, CeA, and LH neurons that project to the PBN in rats. After anesthesia (50 mg/kg ip Nembutal), injections of the retrograde tracer Fluorogold (FG) were made in the physiologically defined gustatory PBN. Brain tissue containing the above forebrain structures was processed and examined for FG and GAD_67 ir. Similar to previous studies, each forebrain site contained retrogradely labeled neurons. Our results suggest further that the major source of input to the PBN taste region is the CeA (608 total cells) followed by GC (257 cells), LH (106 cells), and BNST (92 cells). This suggests a differential contribution to centrifugal control of PBN taste processing. We further show that despite the presence of GAD_67 neurons in each forebrain area, colocalization was extremely rare, occurring only in 3 out of 1,063 FG-labeled cells. If we assume that the influence of centrifugal input is mediated by direct projections to the gustatory region of the PBN, then GABAergic forebrain neurons apparently are not part of this descending pathway.  相似文献   

18.
Gustatory processing is dynamic and distributed   总被引:1,自引:0,他引:1  
The process of gustatory coding consists of neural responses that provide information about the quantity and quality of food, its generalized sensation, its hedonic value, and whether it should be swallowed. Many of the models presently used to analyze gustatory signals are static in that they use the average neural firing rate as a measure of activity and are unimodal in the sense they are thought to only involve chemosensory information. We have recently elaborated upon a dynamic model of gustatory coding that involves interactions between neurons in single as well as in spatially separate, gustatory and somatosensory regions. We propose that the specifics of gustatory responses grow not only out of information ascending from taste receptor cells, but also from the cycling of information around a massively interconnected system.  相似文献   

19.
KAAT1 is a neutral amino acid transporter activated by K+ or by Na+ (9). The protein shows significant homology with members of the Na+/Cl-dependent neurotransmitter transporter super family. E59G KAAT1, expressed in Xenopus oocytes, exhibited a reduced leucine uptake [20–30% of wild-type (WT)], and kinetic analysis indicated that the loss of activity was due to reduction of Vmax and apparent affinity for substrates. Electrophysiological analysis revealed that E59G KAAT1 has presteady-state and uncoupled currents larger than WT but no leucine-induced currents. Site-directed mutagenesis analysis showed the requirement of a negative charge in position 59 of KAAT1. The analysis of permeant and impermeant methanethiosulfonate reagent effects confirmed the intracellular localization of glutamate 59. Because the 2-aminoethyl methanethiosulfonate hydrobromid inhibition was not prevented by the presence of Na+ or leucine, we concluded that E59 is not directly involved in the binding of substrates. N-ethylmaleimide inhibition was qualitatively and quantitatively different in the two transporters, WT and E59G KAAT1, having the same cysteine residues. This indicates an altered accessibility of native cysteine residues due to a modified spatial organization of E59G KAAT1. The arginine modifier phenylglyoxal effect supports this hypothesis: not only cysteine but also arginine residues become more accessible to the modifying reagents in the mutant E59G. In conclusion, the results presented indicate that glutamate 59 plays a critical role in the three-dimensional organization of KAAT1. amino acid transport; structure/function; amino acid modifiers; Manduca sexta  相似文献   

20.
Ink secretion of sea hares (Aplysia spp.), which is a mixture of co-released ink from the ink gland and opaline from the opaline gland, protects sea hares from predatory invertebrates through diverse mechanisms. These include both aversive or deterrent compounds and also high concentrations of amino acids that stimulate the predators' chemical senses and divert the attack through phagomimicry or sensory disruption. The aim of the present study was to examine if sea hares also defend themselves from predatory vertebrates by interacting with their chemical senses. We used sea catfish, Ariopsis felis, in behavioral and electrophysiological experiments. Behavioral tests on sea catfish show that ink is aversive: when ink is added to palatable food items (noodles with food flavoring), the noodles are no longer eaten, and when ink is added to noodles without food flavoring, the noodles are avoided more than unflavored noodles. Behavioral tests also show that opaline and the amino acid components of either opaline or ink are appetitive. Electrophysiological recordings of chemosensory neuronal activity in the olfactory epithelium and maxillary barbels show that the olfactory and gustatory systems of sea catfish are highly stimulated by ink and opaline, and that the amino acid components of ink and opaline significantly contribute to these responses. Compounds generated by the activity of escapin, an L-amino acid oxidase in the secretion, are moderately stimulatory to both olfactory and gustatory systems. Taken together, our results support the idea that sea hares are chemically defended from predatory sea catfish largely through unpalatable chemical deterrents in ink, but possibly also through amino acids stimulating olfactory and gustatory systems and thus functioning through phagomimicry or sensory disruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号