首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery is reported of a fast-moving α chain variant (Hb Natal) which is characterized by a shortened α polypeptide chain because of the deletion of the Tyr-Arg carboxy-terminal residues. Through amplification of appropriate segments of DNA and hybridization with synthetic oligonucleotide probes, it was possible to detect a C → A mutation in codon 140 of the α2 globin gene, which causes a change in the codon for tyrosine to a terminating codon. Hb Natal or α2(minus Tyr-Arg)β2 has a high affinity for oxygen without a Bohr effect and heme-heme interaction. These results provide direct evidence for the importance of the tyrosine residue at α140 in the oxygenation-deoxygenation process.  相似文献   

2.
Jin Y  Sakurai H  Nagai Y  Nagai M 《Biopolymers》2004,74(1-2):60-63
The deoxy-form of human adult hemoglobin (Hb A) exhibits a distinct negative CD band at 287 nm that disappears in the oxy-form. It has been suggested that the negative CD band is due to the environmental alteration of Tyr-alpha 42 or Trp-beta 37 at the alpha(1)beta(2) contact upon deoxygenation. To evaluate the contributions of the aromatic residues at the alpha(1)beta(2) contact and the penultimate tyrosine residues of the alpha and beta subunits (alpha 140 and beta 145) to the negative CD band, three recombinant (r) Hbs (rHb Ser-alpha 42, rHb His-beta 37, and rHb Thr-beta 145) were produced in Escherichia coli, and we compared the near-uv CD spectra of these three rHbs and Hb Rouen (Tyr-alpha 140-->His) with the spectra of Hb A under the condition in which all mutant Hbs were able to undergo the T-->R transition (Hill's n > 2.0). The contributions of Tyr-alpha 42, Trp-beta 37, Tyr-alpha 140, and Tyr-beta 145 to the negative CD band were estimated from changes in the ellipticity of the negative CD band at 287 nm to be 4, 18, 32, and 27%, respectively. These results indicate that environmental alteration of the penultimate tyrosine residues caused by the formation of salt bridges upon the R-->T transition is primarily responsible for the negative CD band.  相似文献   

3.
Two alpha-chain variants, Hb G-Philadelphia and Hb Matsue-Oki, were present in members of a relatively large black family from South Carolina. The four Hb G-Philadelphia heterozygotes averaged 35.6% Hb G, suggesting the presence of an alpha-thalassemia-2 condition in cis to the Hb G mutation, which was confirmed by DNA structural analysis. The seven Hb Matsue-Oki heterozygotes averaged 22.2% Hb MO and likely have four active alpha-chain genes. One infant was a compound heterozygote for the two Hb variants which could not be separated from each other. The quantity of Hb G plus Hb MO was 58% by DEAE-cellulose chromatography and 69% by chain analyses. These results and the family data indicate that this child had three active alpha-chain genes, of which one regulated the synthesis of the normal alpha chain, one was mutated to give the alpha G chain, and one to give the alpha MO chain. The amino acid substitutions in Hb G-Philadelphia and Hb Matsue-Oki are located in the tryptic peptide alpha T-9, which is 29 amino acid residues long. Structural analyses of these abnormalities made use of high-pressure liquid chromatography for the separation of both tryptic and thermolytic peptides and of a highly sensitive ultra-micro sequencing procedure. Although the alpha 68 Asn replaced by Lys substitution is readily demonstrable in Hb G-Philadelphia the elucidation of the alpha 75 Asp replaced by Asn replacement in Hb Matsue-Oki was greatly facilitated by the use of these microprocedures.  相似文献   

4.
L A Dick  G Heibel  E G Moore  T G Spiro 《Biochemistry》1999,38(20):6406-6410
UV resonance Raman difference spectra between ligated and deoxyhemoglobin contain tryptophan and tyrosine signals which arise from quaternary H-bonds in the T state, which are broken in the R state. These H-bonds are unaffected by bis(3,5-dibromosalicyl) fumarate cross-linking at the Lys alpha 99 residues, which prevents dissociation of Hb tetramers to dimers. However, when the pH is lowered from 9.0, or when NaCl is added, intensity is diminished for the tyrosine Y8 and tryptophan W3 bands of cross-linked deoxyHb, but not of native deoxyHb. This effect is attributed to weakening of tertiary H-bonds involving Tyr alpha 140 and Trp alpha 14, when the T state salt bridge between Val alpha 1 and Arg alpha 141 is formed via protonation of the terminal amino group and anion binding. The Tyr alpha 140-Val alpha 93 H-bond connects the Arg alpha 141-bearing H helix with the Lys alpha 99-bearing G helix. Weakening of the H-bond reflects a tension between the fumarate linker and the salt-bridge. This tension inhibits protonation of the Val alpha 1 amino terminus, thus accounting for the diminution of both proton [Bohr effect] and CO2 binding in the T state as a result of cross-linking.  相似文献   

5.
We have analyzed the hemoglobins of a young German patient with beta-thalassemia intermedia and of his immediate family and included in these studies an evaluation of possible nucleotide changes in the beta-globin genes through sequencing of amplified DNA. One chromosome of the propositus and one of his father's carried the GTG-->GGG mutation at codon 126 leading to the synthesis of Hb Dhonburi or alpha 2 beta (2)126(H4)Val-->Gly; this variant is slightly unstable and is associated with mild thalassemic features. His second chromosome and one of his mother's had the common IVS-I-5 (G-->C) mutation that leads to a rather severe beta(+)-thalassemia and the GTG-->ATG mutation at codon 18, resulting in the replacement of a valine residue by a methionine residue. This newly discovered beta-chain variant, named Hb Baden, was present for only 2-3% in both the patient and his mother. This low amount results from a decreased splicing of RNA at the donor splice-site of the first intron that is nearly completely deactivated by the IVS-I-5 (G-->C) thalassemic mutation. The chromosome with the codon 18 (GTG-->ATG) and the IVS-I-5 (G-->C) mutations has thus far been found only in this German family; analysis of 51 chromosomes from patients with the IVS-I-5 (G-->C) mutation living in different countries failed to detect the codon 18 (GTG-->ATG) change.  相似文献   

6.
Approximately 10% of the members of the Koya Dora tribe from Andhra Pradesh (India) carry an alpha chain hemoglobin variant, Hb Koya Dora (Hb KD), usually in amounts of 0.5%-2% of total hemoglobin. In four presumed homozygotes for Hb KD, up to 10% of the abnormal hemoglobin was present. The alpha chain of Hb KD was found to be elongated by at least 16 residues, possibly as a result of a mutation of the normal alpha chain termination codon UAA TO UCA, coding for serine. A pedigree in which two individuals possess Hb KD as well as the alpha chain variant Hb Rampa and normal Hb A proves the existence of two alpha chain loci in this population. Hb DK resembles the previously described Hb Constant Spring [6, 7] in many aspects, probably also in its alpha thalassemia-like expression.  相似文献   

7.
Complete primary structure of human collagen alpha 1 (V) chain   总被引:4,自引:0,他引:4  
Several cDNA clones, encoding prepropeptide of human collagen alpha 1(V) chain, have been isolated. The prepropeptide (1838 amino acids length) of the alpha 1(V) chain was composed of a putative signal peptide, a large NH2-terminal noncollagenous region, a main collagenous region, and a COOH-terminal noncollagenous region. The signal peptide contained many leucine residues. The NH2-terminal noncollagenous region was much larger than those of the other collagens and had a region homologous to the COOH-terminal domain of laminin A chain, but it did not contain a cysteine-rich region that was maintained in the region of the other collagens. This region also contained probable tyrosine sulfation sites, and short collagenous sequences that were interrupted by three noncollagenous segments. The main collagenous region of the alpha 1(V) chain consisted of 338 repeats of Gly-X-Y-triplet. This region had a high degree (82%) of homology with the amino acids of the collagen alpha 1(XI) chain. The COOH-terminal noncollagenous region resembled that of the alpha 1(XI) chain, too, and 8 residues of cysteine that were important for the formation of the triple helix structure of collagens were observed. These results suggest that the alpha 1(V) chain belongs to the fibrillar collagen relative to the alpha 1(XI) chain, but codon usage of the alpha 1(V) cDNA was clearly different from those of the other fibrillar collagens including the alpha 1(XI), while it was similar to type IV collagen. This result supposes a different evolution of the alpha 1(V) gene from those of the other fibrillar collagens.  相似文献   

8.
Hemoproteins are one of the major targets of peroxynitrite in vivo. It has been proposed that the bimolecular heme/peroxynitrite interaction results in both peroxynitrite inactivation (scavenging) and catalysis of tyrosine nitration. In this study, we used spectroscopic techniques to analyze the reaction of peroxynitrite with human methemoglobin (metHb). Although conventional differential spectroscopy did not reveal heme changes, our results suggest that, in the absence of bicarbonate, the heme in metHb reacts bimolecularly with peroxynitrite but is quickly back-reduced by the reaction products. This hypothesis is based on two indirect observations. First, metHb prevents the peroxynitrite-mediated nitration of a target dipeptide, Ala-Tyr, and second, it promotes the isomerization of peroxynitrite to nitrate. Both the scavenging and the isomerization activities of metHb were heme-dependent and inhibited by CO(2). Ferrous cytochrome c was an efficient scavenger of peroxynitrite, but in the ferric form did not show either scavenging or isomerization activities. We found no evidence of an increase in Ala-Tyr nitration with these hemoproteins. Peroxynitrite-treated metHb induced the formation of a long-lived radical assigned to tyrosine by spin-trapping studies. This radical, however, did not allow us to predict an interaction of peroxynitrite with heme. Hb was nitrated by peroxynitrite/CO(2) mainly in tyrosines beta 130, alpha 42, and alpha 140 and, to a lesser extent, alpha 24. The nitration of alpha chain tyrosines more exposed to the solvent (alpha 140 and alpha 24) was higher in CO-Hb and metHb, while nitration of alpha 42, the tyrosine nearest to the heme, was higher in oxyHb. We deduce that the heme/peroxynitrite interaction, which is inhibited in CO-Hb and metHb, affects alpha tyrosine nitration in two opposite ways, i.e., by protecting exposed residues and by promoting nitration of the residue nearest to the heme. Conversely, nitration of beta Tyr 130 was comparable in oxyHb, metHb, and CO-Hb, suggesting a mechanism involving only nitrating species formed during peroxynitrite decay.  相似文献   

9.
Nagai M  Aki M  Li R  Jin Y  Sakai H  Nagatomo S  Kitagawa T 《Biochemistry》2000,39(43):13093-13105
Heme structures of a natural mutant hemoglobin (Hb), Hb M Iwate [alpha87(F8)His-->Tyr], and protonation of its F8-Tyr were examined with the 244-nm excited UV resonance Raman (UVRR) and the 406.7- and 441.6-nm excited visible resonance Raman (RR) spectroscopy. It was clarified from the UVRR bands at 1605 and 1166 cm(-)(1) characteristic of tyrosinate that the tyrosine (F8) of the abnormal subunit in Hb M Iwate adopts a deprotonated form. UV Raman bands of other Tyr residues indicated that the protein takes the T-quaternary structure even in the met form. Although both hemes of alpha and beta subunits in metHb A take a six-coordinate (6c) high-spin structure, the 406.7-nm excited RR spectrum of metHb M Iwate indicated that the abnormal alpha subunit adopts a 5c high-spin structure. The present results and our previous observation of the nu(Fe)(-)(O(tyrosine)) Raman band [Nagai et al. (1989) Biochemistry 28, 2418-2422] have proved that F8-tyrosinate is covalently bound to Fe(III) heme in the alpha subunit of Hb M Iwate. As a result, peripheral groups of porphyrin ring, especially the vinyl and the propionate side chains, were so strongly influenced that the RR spectrum in the low-frequency region excited at 406.7 nm is distinctly changed from the normal pattern. When Hb M Iwate was fully reduced, the characteristic UVRR bands of tyrosinate disappeared and the Raman bands of tyrosine at 1620 (Y8a), 1207 (Y7a), and 1177 cm(-)(1) (Y9a) increased in intensity. Coordination of distal His(E7) to the Fe(II) heme in the reduced alpha subunit of Hb M Iwate was proved by the observation of the nu(Fe)(-)(His) RR band in the 441.6-nm excited RR spectrum at the same frequency as that of its isolated alpha chain. The effects of the distal-His coordination on the heme appeared as a distortion of the peripheral groups of heme. A possible mechanism for the formation of a Fe(III)-tyrosinate bond in Hb M Iwate is discussed.  相似文献   

10.
Almost 10 years ago we reported in this journal the characterization of Hb Hacettepe or alpha 2 beta (2)127(H5)Gln----Glu. Unfortunately, we have to conclude that the original characterization of this Turkish variant was in error. The corrected data are presented in this short communication. The variant (alpha 2 beta (2)65(E9)Lys----Met) was (re)named Hb J-Antakya, after the city where the family resides. An abnormal Hb, observed in a Spanish family and named Hb Complutense, had the beta 127 Gln----Glu substitution, erroneously assigned to the Turkish variant.  相似文献   

11.
Initiation codon mutation as a cause of alpha thalassemia   总被引:14,自引:0,他引:14  
Cloning and sequence analysis of the alpha-globin genes from a Sardinian patient with the nondeletion type of hemoglobin-H disease revealed a new type of thalassemia lesion. A mutation in the alpha 2-globin gene changes the initiation codon ATG to ACG and abolishes the function of this gene. Globin mRNA output from the affected alpha 2 locus is decreased relative to the alpha 1 locus. The mutation is detectable in genomic DNA by restriction analysis with the enzyme NcoI. Of the seven Sardinian patients with nondeletion alpha thalassemia screened with this enzyme, six had the initiation codon lesion.  相似文献   

12.
Replacement of valine by tryptophan or tyrosine at position alpha96 of the alpha chain (alpha96Val), located in the alpha(1)beta(2) subunit interface of hemoglobin leads to low oxygen affinity hemoglobin, and has been suggested to be due to the extra stability introduced by an aromatic amino acid at the alpha96 position. The characteristic of aromatic amino acid substitution at the alpha96 of hemoglobin has been further investigated by producing double mutant r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp). r Hb (alpha42Tyr --> Phe) is known to exhibit almost no cooperativity in binding oxygen, and possesses high oxygen affinity due to the disruption of the hydrogen bond between alpha42Tyr and beta99Asp in thealpha(1)beta(2) subunit interface of deoxy Hb A. The second mutation, alpha96Val -->Trp, may compensate the functional defects of r Hb (alpha42Tyr --> Phe), if the stability due to the introduction of trypophan at the alpha 96 position is strong enough to overcome the defect of r Hb (alpha42Tyr --> Phe). Double mutant r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp) exhibited almost no cooperativity in binding oxygen and possessed high oxygen affinity, similarly to that of r Hb (alpha42Tyr --> Phe). (1)H NMR spectroscopic data of r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp) also showed a very unstable deoxy-quaternary structure. The present investigation has demonstrated that the presence of the crucible hydrogen bond between alpha 42Tyr and beta 99Asp is essential for the novel oxygen binding properties of deoxy Hb (alpha96Val --> Trp) .  相似文献   

13.
Kinetics of CO combination with and dissociation from isomer III, (alpha 1CO beta 1CO)alpha 2 beta 2 or alpha 1 beta 1 (alpha 2CO beta 2CO), and Hb Rothschild have been studied using the double mixing and microperoxidase methods. Isomer III was prepared in a manner so that it was the only reactive species in the reaction mixture. The biphasic reaction time course in both the "on" and "off" reactions of isomer III and the CO combination reaction of Hb Rothschild are attributed to slow relaxation between the fast and slow CO-reacting species in the two proteins: isomer III: l'f = 6 x 10(6) M-1 s-1, l'dimer = 1.7 x 10(6) M-1 s-1, l's = 2.2 x 10(5) M-1 s-1, lf = 0.15 s-1, ls = 0.01 s-1; Hb Rothschild: l'f = 2.8 x 10(6) M-1 s-1; l's = 2.7 x 10(5) M-1 s-1.  相似文献   

14.
The kinetics of CO association to and dissociation from the two isomers of monoliganded species alpha ICO beta I(alpha II beta II) and alpha I beta I (alpha II beta COII) has been studied by double-mixing stopped-flow and microperoxidase methods. The monoliganded species were generated by hybridization between excess ferric Hb and alpha CO2 beta +2 or alpha +2 beta CO2 prepared by high-pressure liquid chromatography (HPLC). The results indicated that: 1) there were no significant differences in the reactivities of alpha and beta chains in the first step of ligation; 2) in the second step of ligation there was significant cooperativity in the reaction of deoxyhemoglobin with 0.05 or 0.1 equivalent of CO. Diliganded species were therefore formed in significant amounts. The double-mixing HPLC results suggested that in the second step of ligation alpha chains reacted faster than the beta chains, and the main diliganded species formed was alpha I beta ICO (alpha IICO beta II) or its isomer alpha ICO I(alpha II beta IICO). These results seem to indicate that the reaction of the first CO is mostly random and in the second step of ligation CO binds more to the tetramers in which one beta chain is already ligated: alpha I beta I (alpha II beta II) + CO----alpha ICO beta I (alpha II beta II) and alpha I beta ICO (alpha II beta II) + CO----alpha I beta ICO (alpha IICO beta II).  相似文献   

15.
To clarify the functional role of Tyr-42(C7) alpha, which forms a hydrogen bond with Asp-99(G1) beta at the alpha 1-beta 2 interface of human deoxyhaemoglobin, we engineered two artificial mutant haemoglobins (Hb), in which Tyr-42 alpha was replaced by Phe (Hb Phe-42 alpha) or His (Hb His-42 alpha), and investigated their oxygen binding properties together with structural consequences of the mutations by using various spectroscopic probes. Like most of the natural Asp-99 beta mutants, Hb Phe-42 alpha showed a markedly increased oxygen affinity, a reduced Bohr effect and diminished co-operativity. Structural probes such as ultraviolet-region derivative and oxy-minus-deoxy difference spectra, resonance Raman scattering and proton nuclear magnetic resonance spectra indicate that, in Hb Phe-42 alpha, the deoxy T quaternary structure is highly destabilized and the strain imposed on the Fe-N epsilon (proximal His) bond is released, stabilizing the oxy tertiary structure. In contrast with Hb Phe-42 alpha, Hb His-42 alpha showed an intermediately impaired function and only moderate destabilization of the T-state, which can be explained by the formation of a new, weak hydrogen bond between His-42 alpha and Asp-99 beta. Spectroscopic data were consistent with this assumption. The present study proves that the hydrogen bond between Tyr-42 alpha and Asp-99 beta plays a key role in stabilizing the deoxy T structure and consequently in co-operative oxygen binding.  相似文献   

16.
Data are reported for an 85-year-old black make who had an HPFH condition on one chromosome and a suspected 'delta-thalassemia' on the other. Sequence analysis of amplified DNA of an appropriate segment of the delta-globin gene identified a GTG to ATG mutation for codon 98 and thus a Val----Met replacement in the delta chain. This abnormality was confirmed by hybridization of amplified DNA with 32P-labeled synthetic probes and by the amino-acid composition of the isolated tryptic peptide delta T-11. Thus, the 'delta-thalassemia' is caused by the presence of an Hb A2 variant that is considered to be unstable to a similar extent as is Hb K?ln, its beta chain counterpart.  相似文献   

17.
Adachi K  Yang Y  Lakka V  Wehrli S  Reddy KS  Surrey S 《Biochemistry》2003,42(34):10252-10259
The role of heterotetramer interaction sites in assembly and autoxidation of hemoglobin is not clear. The importance of beta(116His) (G-18) and gamma(116Ile) at one of the alpha1beta1 or alpha1gamma1 interaction sites for homo-dimer formation and assembly in vitro of beta and gamma chains, respectively, with alpha chains to form human Hb A and Hb F was assessed using recombinant beta(116His)(-->)(Asp), beta(116His)(-->)(Ile), and beta(112Cys)(-->)(Thr,116His)(-->)(Ile) chains. Even though beta chains (e.g., 116 His) are in monomer/tetramer equilibrium, beta(116Asp) chains showed only monomer formation. In contrast, beta(116Ile) and beta(112Thr,116Ile) chains showed homodimer and homotetramer formation like gamma-globin chains which contain 116 Ile. Assembly rates in vitro of beta(116Ile) or beta(112Thr,116Ile) chains with alpha chains were 340-fold slower, while beta(116Asp) chains promoted assembly compared to normal beta-globin chains. These results indicate that amino acid hydrophobicity at the G-18 position in non-alpha chains plays a key role in homotetramer, dimer, and monomer formation, which in turn plays a critical role in assembly with alpha chains to form Hb A and Hb F. These results also suggest that stable dimer formation of gamma-globin chains must not occur in vivo, since this would inhibit association with alpha chains to form Hb F. The role of beta(116His) (G-18) in heterotetramer-induced stabilization of the bond with oxygen in hemoglobin was also assessed by evaluating autoxidation rates using recombinant Hb tetramers containing these variant globin chains. Autoxidation rates of alpha(2)beta(2)(116Asp) and alpha(2)beta(2)(116Ile) tetramers showed biphasic kinetics with the faster rate due to alpha chain oxidation and the slower to the beta chain variants whose rates were 1.5-fold faster than that of normal beta-globin chains. In addition, NMR spectra of the heme area of these two hemoglobin variant tetramers showed similar resonance peaks, which are different from those of Hb A. Oxygen-binding properties of alpha(2)beta(2)(116His)(-->)(Asp) and alpha(2)beta(2)(116His)(-->)(Ile), however, showed slight alteration compared to Hb A. These results suggest that the beta116 amino acid (G18) plays a critical role in not only stabilizing alpha1beta1 interactions but also in inhibiting hemoglobin oxidation. However, stabilization of the bonds between oxygen and heme may not be dependent on stabilization of alpha1beta1 interactions. Tertiary structural changes may lead to changes in the heme region in beta chains after assembly with alpha chains, which could influence stability of dioxygen binding of beta chains.  相似文献   

18.
Hemoglobin variants in which a frameshift results in chain elongation are unusual. Hemoglobin Pakse (Hb Pakse) is an unstable hemoglobin with abnormal elongation, first described in Indochina. An alpha2-globin gene termination codon mutation, TAA -->TAT or Term -->Tyr, has been described in the pathogenesis of Hb Pakse. This abnormality causes a frameshift that elongates the alpha chain amino acids. Computer-based protein structure modeling was used in a bioinformatics analysis of the tertiary structure of these elongated amino acid sequences. The elongated part of Hb Pakse showed additional helices, which may cause the main alteration in Hb Pakse. Abnormalities in the fold structure of globin in Hb Pakse were identified, and helices additional to the normal alpha globin chains were shown in the elongated part of Hb Pakse.  相似文献   

19.
Li R  Nagai Y  Nagai M 《Chirality》2000,12(4):216-220
The CD band of human adult hemoglobin (Hb A) at 280 approximately 290 nm shows a pronounced change from a small positive band to a definite negative band on the oxy (R) to deoxy (T) structural transition. This change has been suggested to be due to environmental alteration of Tyrs (alpha42, alpha140, and beta145) or beta37 Trp residues located at the alpha1beta2 subunit interface by deoxygenation. In order to evaluate contributions of alpha140Tyr and beta37Trp to this change of CD band, we compared the CD spectra of two mutant Hbs, Hb Rouen (alpha140Tyr-->His) and Hb Hirose (beta37Trp-->Ser) with those of Hb A. Both mutant Hbs gave a distinct, but smaller negative CD band at 287nm in the deoxy form than that of deoxyHb A. Contributions of alpha140Tyr and beta37Trp to the negative band at the 280 approximately 290 nm region were estimated from difference spectra to be 30% and 26%, respectively. These results indicate that the other aromatic amino acid residues, alpha42Tyr and beta145Tyr, at the alpha1beta2 interface, are also responsible for the change of the CD band upon the R-->T transition of Hb A.  相似文献   

20.
Structural hemoglobin (Hb) variants are mainly due to point mutations in the globin genes resulting in single amino acid substitutions. Until date, about 200 alpha chain variants have been identified and they are usually detected during the hemoglobinopathy screening programs. Under a community control program for hemoglobinopathies, which involved screening of antenatal cases followed by prenatal diagnosis if indicated. Here, we report a rare alpha globin gene variant Hb Fontainebleau [a21(B2)Ala>Pro] detected in the heterozygous condition in a 35-year-old pregnant lady screened during this program. This is the second report of this alpha globin variant from India. Unlike the earlier case from India where Hb Fontainebleau was reported in a neonate who was also a carrier of Hb Sickle and had no clinical problems, this case presented with a bad obstetric history associated with the secondary infertility. However, the presence of the variant and the obstetric complications may be unrelated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号