首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Maximal heme occupancy, the maximal proportion of total catalase heme present in the form of Compound I, is found to be 0.4 both in the enzyme isolated from rat liver and in the peroxisomal enzyme as present in the intact cells of perfused rat liver. This indicates that the ratio of second order rate constants for catalatic decomposition and for formation of Compound I, k4′k1, is equal in vitro and in vivo.Catalase was isolated from rat liver, and the extinction coefficients for Compound I and for cyanide-catalase at 640 minus 660 nm were determined. The measurement of heme occupancy of catalase in hemoglobin-free perfused rat liver was made possible by wavelength scanning as well as by dual wavelength absorbance photometry. Thus, Compound I and cyanide-catalase were demonstrated in the red region and in the Soret band region.Meeting the particular needs of organ photometry, specific metabolic transitions were used to visualize specific transitions of absorbing pigments. Compound I is specifically demonstrated by its decomposition by the hydrogen donor, methanol. A measure for total catalase heme is provided by formation of cyanide-catalase. The cyanide concentrations required are well below appearance of possible interference by other cyanide-binding hemoproteins at 640–660 nm.  相似文献   

2.
The carbohydrate composition of dextranase from Penicillium funiculosum 15, as well as the composition of products of dextran deep hydrolysis by the enzyme were studied. The products are normally used to stabilize the enzyme during its purification. Using the methods available, it was possible to identify only part of strongly bound (adsorbed) carbohydrates. It was found that dextranase from Pen. funiculosum 15 contained two types of carbohydrates strongly bound with protein: adsorbed and covalently bound carbohydrates. A procedure allowing a complete separation of adsorbed carbohydrates was developed. The procedure is based on the use of stabilizing additives of readily separable carbohydrates. The enzyme, which is shown by polyacrylamide gel electrophoresis in the presence of Na-dodecyl sulfate and beta-mercaptoethanol to be homogeneous, consists of 313 amino acid residues, 3 glucosamine residues and residues of mannose, galactose and fucose in the ratio 6:2:1.  相似文献   

3.
Determination of the uv absorption spectra of 4-MUF-GlcNAc and 4-MUF showed them to differ significantly at 350 nm. This finding was applied to the enzymatic hydrolysis of fluorogenic 4-MUF-O-substituted substrates with a continuous, spectrophotometric assay procedure. With the use of this automated technique, selected kinetic properties, i.e., Ki, Km, and V, of “purified” liver N-acetyl-β-d-hexosaminidases A and B and of crystalline Jack bean meal hexosaminidase were determined and found to be in close agreement with previousy published data obtained by conventional single point assay methods. The described technique is fast, accurate, and permits instantaneous measurements of the kinetic properties of certain enzymes implicated in a number of genetic disorders.  相似文献   

4.
A sensitive and rapid high-performance liquid chromatography method has been developed for simultaneous determination of procaine and its metabolite p-aminobenzoic acid (PABA) from human and rat liver tissue extracts. The method has been validated according to ICH guidelines in terms of selectivity, linearity, lower limit of detection, lower limit of quantitation, accuracy, precision and recovery from human and rat liver tissue extracts. Chromatography was carried out on a Discovery C(18) column using 10mM ammonium acetate at pH 4.0 and acetonitrile as mobile phase. Retention times for procaine and PABA were 6.6 and 5.3 min, respectively. Linearity for each calibration curve in both tissue extracts was observed across a range from 10 microM to 750 microM for procaine and PABA. The lower limit of detection for both procaine and PABA was 5 microM and the lower limit of quantitation was 10 microM in both tissue extracts. The intra- and inter-day relative standard deviations (R.S.D.) for both procaine and PABA were <6%. Recoveries of procaine and PABA from human and rat liver tissue extracts were determined by two different methods with a single-step protein precipitation technique being employed in both methods. Recoveries for both procaine and PABA were greater than 80% from both human and rat liver tissue extracts.  相似文献   

5.
Mutations to ouabain resistance (selecting for base modifications at the co-dominant Na+K+-dependent ATP-ase locus) and thioguanine resistance (selecting for a wide range of genetic changes at the recessive hypoxanthine-guanine phosphoribosyl transferase locus) were measured in a repair-proficient human lymphoblastoid line with defined monochromatic radiations in the UVC (254 nm), UVB (302 nm, 313 nm), UVA (334 nm, 365 nm) and visible (405 nm) ranges. No mutations were detected at wavelengths in the range 334-405 nm. At 254 nm and 313 nm, both mutations to thioguanine resistance and survival were consistent with those expected from the relative levels of cyclobutane-type pyrimidine dimers induced. However, at 313 nm, the ratio of ouabain-resistant to thioguanine-resistant mutants is 10 times higher than at 254 nm, indicating that a unique type of pre-mutagenic base damage is induced at the longer wavelength. Radiation in the UVA (334 nm) range reduced the induction of mutations by a UVC (254 nm) wavelength at both mutation markers. These results suggest, first, that distinct types of biologically expressed genetic damage may be induced in the UVB region of sunlight and, second, that strong interactions may occur between the different wavelength regions of sunlight that can modify the expression of this genetic damage in human cells.  相似文献   

6.
A 2-fold enhancement in the efficiency of rose bengal-photosensitized inhibition of red cell acetylcholinesterase activity was observed upon excitation of the dye in the ultraviolet (UV) (313 nm) compared to irradiation in the visible (514 or 550 nm). The measurements of efficiency of photosensitized enzyme inhibition were based on the effect produced when the same number of photons are absorbed by rose bengal (RB) at each wavelength. The mechanism for this unexpected enhancement of RB photosensitization upon UV excitation was investigated. The yield of singlet oxygen (O2(1 delta g], detected by time-resolved luminescence at 1270 nm, was independent of excitation wavelength for RB. Radicals were produced upon irradiation of RB at 313 nm but not at 514 nm as detected by bleaching of N,N-dimethylnitrosoaniline (RNO). Irradiation of RB at 313 nm but not at 514 nm appeared to cause homolytic cleavage of carbon-iodine bonds in the dye because iodine radicals, I, detected as I2 were produced with a quantum yield of 0.0041 +/- 0.0005 upon excitation in the UV. Photolysis of I2 in the presence of RNO caused bleaching of the RNO absorption at 440 nm, apparently resulting from reaction of I with RNO. Thus, the enhanced photosensitization upon UV excitation of RB is attributed to formation of I and/or RB. These results indicate that radicals, produced with low relative yield but having high reactivity compared to O2(1 delta g), can contribute to photosensitized enzyme inhibition and may represent an alternative mechanism for photodynamic therapy.  相似文献   

7.
Mutation to virulence has been measured in intact bacteriophage lambda 15 infected into host cells pre-treated with UVC (254 nm), UVB (313 nm), UVA (334 nm, 365 nm) or visible (405 nm) radiations. We have confirmed that UVC radiation leads to a large enhancement (maximum enhancement factor of 140 in wild-type) of the background spontaneous mutation frequency (non-targeted mutagenesis) and have further shown that this is at least partially dependent on excision repair (maximum enhancement factor of 14 in uvrA strain). In contrast, UVB (313 nm) radiation enhances the mutation frequency by less than a factor of 2. Longer wavelength UVA radiation (334 nm, 365 nm) actually reduces the mutation frequency to 25% of the background levels presumably by reducing the levels of viral replication occurring in the host cells. A visible wavelength (405 nm) has no effect on mutation frequency over the fluence range employed.  相似文献   

8.
Two convenient and sensitive continuous spectrophotometric assays for cytosolic epoxide hydrolase are described. The assays are based on the differences in the ultraviolet spectra of the epoxide substrates and their diol products. The hydrolysis of 1,2-epoxy-1-(p-nitrophenyl)pentane (ENP5) is accompanied by a decrease in absorbance at 302 nm, while the hydration of 1,2-epoxy-1-(2-quinolyl)pentane (EQU5) produces an increase in absorbance at 315.5 nm. The Km, Vmax values for ENP5 and EQU5 with purified mouse liver cytosolic epoxide hydrolase were 1.7 microM, 11,700 nmol/min/mg and 25 microM, 8300 nmol/min/mg, respectively. Both substrates are hydrolyzed significantly faster than trans-stilbene oxide, which is currently the most commonly used substrate for measuring cytosolic epoxide hydrolase activity. No spontaneous hydrolysis of the substrates is detectable under normal assay conditions. The assays are applicable to whole tissue homogenates as well as purified enzyme preparations. p-Nitrostyrene oxide and p-nitrophenyl glycidyl ether were also examined and found to be very poor substrates for cytosolic epoxide hydrolase from mouse liver.  相似文献   

9.
Haemophilus influenzae was labeled with thymidine-3H (dThd), then grown in the presence of 5-bromodeoxyuridine (BrdUrd), and then irradiated with 313 nm light (a wavelength that selectively photolyzes DNA containing 5-bromouracil [BrUra]). Irradiation with 313 nm light induced breaks in the 3H-labeled strands in cells grown with BrdUrd at a much higher frequency than in 14C-labeled DNA of cells not exposed to BrdUrd. Breakage of the 3H-labeled strands was about 0.6% as efficient as that of fully BrUra-substituted DNA. During growth in the presence of BrdUrd, susceptibility to 313 nm-induced breakage of the 3H-labeled DNA strands increased, reaching a maximum in about one generation, and it decreased to zero during subsequent growth for one generation in medium containing dThd instead of BrdUrd. Heat denaturation of DNA extracted from dThd-3H-labeled cells grown in the presence of BrdUrd eliminated 313 nm-induced breakage of the 3H-labeled strands. It is concluded that breakage of the 3H-labeled DNA strands resulted from reaction with photoproducts in the base-paired, BrUra-containing strands, rather than from photolysis of BrdUrd incorporated into parental strands. It may be possible to utilize the phenomenon of interstrand breakage in physical studies of DNA replication.  相似文献   

10.
Four rapid, independent assays of enzymatic pantetheine hydrolysis are described and compared using an enzyme partially purified from pig kidney. Two assays detect specifically the hydrolysis products: cysteamine (2-aminoethanethiol) is measured by the absorbance of its fluoropyruvate adduct at 300 nm and pantothenate is measured by radioimmunoassay. Methods of [14C]pantethine synthesis are discussed and the labeled substrate employed in a third enzymatic assay. A fourth assay continuously monitors the absorbance of mercaptide ion at 240 nm. The mercaptide ion concentration increases proportionally with hydrolysis at a buffered pH because of a difference in pK(-SH) between pantetheine (9.9) and cysteamine (8.1) at 37°C. The enzyme shows a pH optimum of ca. 9 and an apparent Km of 20 μm.  相似文献   

11.
A spectrophotometric method for the assay of NADase-catalyzed reactions was developed. The assay consisted of monitoring the decrease in absorbance at 275 nm accompanying the enzyme-catalyzed hydrolysis of ?-NAD. A millimolar extinction coefficient of 0.89 at 275 nm was determined for the hydrolysis of the nicotinamide-ribosidic bond of ?-NAD. Under assay conditions the assay was shown to be linear up to 50% completion. A linear relationship between the rate of ?-NAD hydrolyzed and the amount of NADase added was observed. The Km and Vmax values for Bungarus fasciatus venom NADase-catalyzed hydrolysis of ?-NAD were determined spectrophotometrically and were shown to be the same as those determined by other analytical methods.  相似文献   

12.
Colorimetric assay for cellular transglutaminase   总被引:1,自引:0,他引:1  
A colorimetric assay for cellular transglutaminase using 5-(biotinamido)pentylamine and polyvinylidine difluoride membranes for crude cellular preparations and purified enzyme has been developed. The biotinpentylamine substrate was incorporated into N,N-dimethylcasein by transglutaminase, the biotinylated products were adsorbed onto the membrane disks and conjugated with streptavidin-beta-galactosidase, and the absorbance resulting from the formation of p-nitrophenol from hydrolysis of p-nitrophenyl-beta-D-galactopyranoside was measured at 405 nm. The validity of the assay was established by showing a good correlation, gamma = 0.922, between the colorimetric procedure and the commonly used radiometric filter paper method for the enzyme. The procedure offers a rapid, sensitive, and nonisotopic method for the estimation of cellular transglutaminase activity in as low as 20 ng of purified guinea pig liver transglutaminase and 10 micrograms of crude fibroblast cytosol protein.  相似文献   

13.
Exposure of ICR 2A frog cells to 265 nm, 289 nm, 302 nm or 313 nm monochromatic ultraviolet (UV) wavelengths induced the formation of sister-chromatid exchanges (SCEs). However, treatment of cells with photoreactivating light (PRL) following the UV irradiations resulted in a lower level of SCEs compared with cells incubated in the dark. Hence, it can be concluded that pyrimidine dimers are the principal photoproducts responsible for the induction of SCEs in cells exposed to 265-313 nm UV due to the specificity of DNA photolyase for the light-dependent monomerization of dimers in DNA. It was also found that the maximum yield of induced SCEs in 313 nm-irradiated cells was only about 7 SCEs per cell whereas the plateau values for the shorter wavelengths were approximately 15-20 SCEs per cell. In addition, treatment of cells with 313 nm plus 265 nm light resulted in a lower level of SCEs than in cells exposed to 265 nm UV alone. These results can be interpreted in the context of a replication model for SCE, in which the high level of non-dimer damages produced in the DNA of 313 nm-irradiated cells inhibits the induction of SCEs by the pyrimidine dimers that are also produced by this wavelength.  相似文献   

14.
A continuous spectrophotometric assay of H+-ATPase activity was developed by combining two well-known methods for measuring proton pumping and ATPase activity. Proton uptake into plasma membrane vesicles from Avena sativa L. (cv Rhiannon) was monitored as the absorbance decrease at 495 nm of the ΔpH probe acridine orange. Simultaneously, ATPase activity was measured by following the absorbance decrease at 340 nanometers by coupling ATP hydrolysis enzymatically to the oxidation of NADH. This H+-ATPase assay is convenient for determining the relative relationship between ATP hydrolysis and proton pumping.  相似文献   

15.
Chang human liver cells were treated with the carcinogens N-methyl-N′-nitrosoguanidine (MNNG) and nitrosomorpholine (NM). In addition, cells were exposed to the folic acid analog, 2-hydroxy-N10 nitrosofolic acid. Repair of the damage to DNA was estimated by selective photolysis of BUdR-containing repaired regions with 313 nm radiation. The influence of the co-carcinogen Arlacel A was estimated with the three compounds. Results indicated significant repair synthesis with MNNG- and NM-treated cells. 2-Hydroxy-N10 nitrosofolic acid elicited no damage to the liver DNA. Arlacel A prevented repair synthesis in cells treated with NM and MNNG.  相似文献   

16.
(1) The hydrolysis of 32P- or myo-[2-3H]inositol-labelled rat liver microsomal phospholipids by rat liver lysosomal enzymes has been studied. (2) The relative rates of hydrolysis of phospholipids at pH4.5 are: sphingomyelin>phosphatidylethanolamine>phosphatidylcholine> phosphatidylinositol. (3) The predominant products of phosphatidylcholine and phosphatidylethanolamine hydrolysis are their corresponding lyso-compounds, indicating a slow rate of total deacylation. (4) Ca2+ inhibits the hydrolysis of all phospholipids, though only appreciably at high (>5mm) concentration. The hydrolysis of sphingomyelin is considerably less sensitive to Ca2+ than that of glycerophospholipids. (5) Analysis of the water-soluble products of phosphatidylinositol hydrolysis (by using myo-[3H]inositol-labelled microsomal fraction as a substrate) produced evidence that more than 95% of the product is phosphoinositol, which was derived by direct cleavage from phosphatidylinositol, rather than by hydrolysis of glycerophosphoinositol. (6) This production of phosphoinositol, allied with negligible lysophosphatidylinositol formation and a detectable accumulation of diacylglycerol, indicates that lysosomes hydrolyse membrane phosphatidylinositol almost exclusively in a phospholipase C-like manner. (7) Comparisons are drawn between the hydrolysis by lysosomal enzymes of membrane substrates and that of pure phospholipid substrates, and also the possible role of phosphatidylinositol-specific lysosomal phospholipase C in cellular phosphatidylinositol catabolism is discussed.  相似文献   

17.
Specific messenger RNA for glutamate dehydrogenase was partially purified from a calf liver polysomal poly(A)-mRNA fraction by sucrose density gradient centrifugation. Enzyme activity in the translational incubation mixture was detected by measuring NADH oxidation in the presence of -ketoglutarate and ammonia as a decrease in absorbancy 340–442 nm in a dual wavelength Aminco DW-2 spectrophotometer.  相似文献   

18.
A high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of busulfan in plasma. Busulfan was extracted in toluene, derivatized by 2,3,5,6-tetrafluorothiophenol to obtain di-TFTP-butane, the derivatization product was then re-extracted in toluene and injected into the HPLC system with ultraviolet detection (wavelength: 275 nm). Recovery from extraction was 80%, the limit of quantification was 50 ng/ml and linearity ranged from 50 to 2000 ng/ml. In addition, forty-two samples obtained from pediatric patients treated with busulfan were analyzed by the HPLC and GC–MS assays based on the same derivatization procedure. The correlation between the di-TFTP-butane concentrations was highly significant (p<0.0001), demonstrating that the two methods were in good agreement.  相似文献   

19.
A new spectrophotometric method for the assay of chitosanase based on complex formation of the substrate chitosan with Calcofluor white dye is described. The absorption maximum for the chitosan-Calcofluor complex is determined to be 406 nm. The apparent minimum size of chitosan for complex formation is 5–7 kDa. Therefore, those enzymes that do not generate glucosamine or reducing groups as products of hydrolysis at levels not measurable by the available methods of assay can be assayed by the present method. In the standardized procedure 200 μg of chitosan in acetate buffer pH 4.5 with the enzyme in a reaction volume of 1.5ml is incubated at 45°C for 1 h, after which 1.5 ml of Calcofluor white (0.05%) is added, kept for 1h and absorbance at 406 nm measured by a spectrophotometer. The chitosanase unit is arbitrarily defined as the reduction in absorbance by 0.01/min.  相似文献   

20.
Ta-Hsiu Liao 《Phytochemistry》1977,16(10):1469-1474
A deoxyribonuclease (DNase), similar to bovine pancreatic DNase, has been isolated from germinating barley. Commerically available malt was used as source of the enzyme. The purification procedure involves (a) ammonium sulfate fractionation (45–65% saturation), (b) CM-cellulose chromatography at pH 4.7 and (c) DEAE-cellulose chromatography at pH 8. DEAE-cellulose separates the enzyme into 4 distinct forms, designed as DNases A, B, C, and D. DNase A and B may be rechromatographed on DEAE-cellulose employing a CaCl2 instead of Tris-HCl gradient. Both forms appear homogeneous on regular and sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. In addition, both forms have a sp. act. of ca 700 units per A unit at 280 nm, similar to the potency of the pancreatic enzyme. DNase C and D, which are present in relatively small quantities in malt, were not characterized. The MWs of DNases A and B, as estimated by the SDS gel electrophoresis techniques, are near 32 000, slightly larger than that of the pancreatic enzyme. In the presence of either Mn2+ or Mg2+, the pH-activity profile of the barley enzyme is similar to that obtained with the pancreatic enzyme. Like the pancreatic enzyme, barley DNase is protected by Ca2+ from inactivation. The amino acid compositions of the A and B forms are about the same; a comparison of the malt and pancreatic enzymes shows many similarities but major differences in the amounts of glutamic acid, proline and glycine. The hydrolysis products of DNA by malt DNase are indistinguishable from those obtained with pancreatic DNase. Further hydrolysis of these products by snake venom phosphodiesterase shows malt DNase to be a 5′-phosphate producer. Deoxythymidine 3′,5′-di-p-nitrophenyl phosphate, one of the synthetic substrates of pancreatic DNase, is also hydrolysed by malt DNase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号