共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Hens SM 《American journal of primatology》2005,65(2):149-166
The orangutan is widely recognized as a highly dimorphic species. An ontogenetic approach to the study of sexual dimorphism can assist researchers in understanding both where and when these differences develop. In this study, 357 orangutans from Borneo were divided into five developmental stages representing infancy to mature adulthood. Three-dimensional (3D) coordinate data from 16 landmarks representing the face and palate were analyzed by means of a Euclidean distance matrix analysis (EDMA), a quantitative method for the comparison of forms. Three separate analyses (an age-specific static comparison of forms, a sex-specific analysis of growth trajectories, and an intersex comparison of patterns of relative growth) were carried out with the intent to describe the rate, timing, magnitude, and pattern of growth in the orangutan face and palate. The results indicate that generally males and females share a similar, but not identical, pattern of growth or local form change, but differ in growth rate, timing, and magnitude of difference. Dimorphism in the face and palate can be localized in infancy and traced throughout all age intervals. Orangutan females grow slightly faster than males from infancy to adolescence, at which time male growth exceeds female growth. Female growth ceases with the advent of adulthood, while male growth continues (i.e., both the number and magnitude of the dimorphic dimensions increase). Males and females are similar in facial dimensions and growth related to the orbits, upper face, and palate width. They maintain these similarities throughout development. However, they differ in facial and nasal height, palate length, snout projection, depth of the nasopharynx, and hafting of the face onto the skull. The face broadens and the zygomatic bone flares dramatically in adult males, corresponding to the development of cheek pads. While growth patterns are similar between the two sexes, they differ in the lateral orbit, snout projection, and hafting of the face onto the cranium. Adult dimorphism is the result of growth patterns experienced throughout life, and it is not equally expressed across the cranium. An understanding of patterns of dimorphism, along with the magnitude of difference, may be helpful for interpreting dimorphism in the fossil record. 相似文献
3.
Several intracranial pathological conditions can affect the bones of the skull. The most common cause of these conditions is tumor, but infection and other diseases are also known to affect the bones of the skull. Distinguishing between the various causes of intracranial skeletal pathology in archaeological human remains is usually a challenging exercise, and a specific diagnosis will often be impossible. Meningiomas are tumors that arise in arachnoid tissues embedded in the outer layer of the dura. Because of this association, they occur almost exclusively in the skull and vertebral column. Usually meningiomas are slow-growing tumors that do not metastasize to other organs and tissues of the body. However, rare cases can be malignant and, even when meningiomas are benign, their presence and growth can adversely affect the nervous and vascular supply to other tissues in the skull and vertebral column. Their effect on adjacent bone tissue varies from stimulating bone-forming lesions to causing highly destructive lesions. A few examples of meningioma have been described in the paleopathological literature. Most of these cases are bone-stimulating meningiomas. The case presented here is a probable example of a highly destructive meningioma of the skull base, with unilateral extension into the left side of the cranium. This case is compared with a modern clinical case of destructive intracranial meningioma that was documented both radiographically and pathologically. Destructive meningiomas can be confused with other pathological conditions, including benign and malignant tumors. Criteria for differentiating the diagnostic options are reviewed. 相似文献
4.
5.
Hens SM 《American journal of physical anthropology》2003,121(1):19-29
New insights may be gleaned by taking an ontogenetic approach to investigations of adult dimorphism. Previous work in this area relied on traditional, caliper-based, morphometric methods, and produced conflicting results. This study uses a three-dimensional (3-D) approach for both local and global form comparisons of sex-specific growth and growth patterns. 3-D coordinate data were collected for 20 landmarks on 94 orangutan crania divided into five developmental stages. Data were analyzed using Euclidean distance matrix analysis (EDMA). Results indicate that differences in growth patterns between male and female orangutans exist in the youngest age intervals. Dimorphic patterns are strongest in the face and basicranium at the youngest age intervals, and in the face and neurocranium during adult stages. Females grow substantially more in the cranial base and face during the youngest age groups, while males grow more than females in all anatomical regions later in development. Growth in the palate was similar between sexes. Sexual dimorphism may be produced through the continued growth of one sex relative to the other, representing differences in timing, or growth duration. Dimophism may also result from different growth rates between sexes, where one sex develops faster than the other sex in the same time interval. Orangutan males and females differ in both the rate and duration of their craniofacial development. The data analysis technique used here, EDMA, was integral in identifying dynamic growth processes rather than just the static end results of each developmental stage. 相似文献
6.
Jimenez P Martinez-Insua A Franco-Vazquez J Otero-Cepeda XL Santana U 《American journal of physical anthropology》2012,147(1):40-51
Artificial fronto-occipital deformation of the cranial vault was typical of pre-Columbian cultures in the central Andean coastal regions. We have studied the influence of this deformation on maxillary and mandibular morphology. Measurements were performed on 86 adult Ancon skulls with anteroposterior deformation. Undeformed skulls from the area of Makatampu (n = 52) were used as the control group. To explore the influence of the deformity on occlusion, the skulls were categorized using the Angle classification and the alignment of the interincisor midline. In the group of deformed skulls, there was an increase in lateral growth of the vault and of the base of the skull (P < 0.001), giving rise to a greater interpterygoid width of the maxilla (P < 0.001), and an increase in the transverse diameter of the palatal vault. The mandible presented an increase in the length of the rami (P < 0.001) and in the intercondylar width, with no alteration of mandibular length. The deformed skulls had normal (class I) occlusion, with no displacement of the midline. The difference in the asymmetry index between the two groups was not statistically significant. Artificial fronto-occipital deformation of the cranial vault provoked compensatory lateral expansion of the base that was correlated with the transverse development of the maxilla and mandible. Occlusion and sagittal intermaxillary position were not affected by the cranial deformity. These results provide evidence of the integration between the neurocranium and the viscerocranium in craniofacial development, and support the hypothesis of a compensatory effect of function. 相似文献
7.
Ahern JC 《American journal of physical anthropology》2005,127(3):267-276
The anteroposterior position of the foramen magnum distinguishes living Homo sapiens from apes, and has been used as evidence for the hominid status of numerable fossils in the history of human paleontology. During the past decade, foramen magnum position has been cited as evidence of the hominid status of Ardipithecus and Sahelanthropus. Specifically, the basion of Ardpithecus is reported to be inline with the bicarotid chord, while the basion of Sahelanthropus is reported to both touch the biporion chord and intersect the bicarotid chord. In order to assess the effectiveness of anteroposterior foramen magnum position in distinguishing hominids from nonhominid apes, this study examined whether or not the positions of biporion and bicarotid relative to basion sufficiently distinguished Pan troglodytes from recent Homo sapiens and Plio-Pleistocene hominids. The distances from basion to the biporion chord (BSBIP) and from basion to the bicarotid chord (BSBIC) were measured on samples of chimpanzee (n = 69) and recent human (n = 42) crania and a sample of Plio-Pleistocene hominid fossils (n = 8). The data were used to test the hypothesis that BSBIP and BSBIC measurements do not sufficiently distinguish P. troglodytes from hominids. While basion to biporion (BSBIP) does not effectively distinguish P. troglodytes from Plio-Pleistocene hominids and humans when used univariately, basion to bicarotid (BSBIC), when used univariately or bivariately with BSBIP, can be used to test whether or not an unknown specimen is a hominid. These results are used to evaluate the hominid status of Ardipithecus and Sahelanthropus. 相似文献
8.
Federica Landi Antonio Profico Alessio Veneziano Isabelle De Groote Giorgio Manzi 《American journal of primatology》2020,82(9):e23170
The position (FMP) and orientation (FMO) of the foramen magnum have been used as proxies for locomotion and posture in extant and extinct primates. Several indices have been designed to quantify FMP and FMO but their application has led to conflicting results. Here, we test six widely used indices and two approaches (univariate and multivariate) for their capability to discriminate between postural and locomotor types in extant primates and fossil hominins. We then look at the locomotion of australopithecines and Homo on the base of these new findings. The following measurements are used: the opisthocranion–prosthion (OP–PR) and the opisthocranion–glabella (OP–GL) indices, the basion–biporion (BA–BP) and basion–bicarotid chords, the foramen magnum angle (FMA), and the basion–sphenoccipital ratio. After exploring the indices variability using principal component analysis, pairwise comparisons are performed to test for the association between each index and the locomotor and postural habits. Cranial size and phylogeny are taken into account. Our analysis indicates that none of the indices or approaches provides complete discrimination across locomotor and postural categories, although some differences are highlighted. FMA and BA–BP distinguish respectively obligate and facultative bipeds from all other groups. For what concerns posture, orthogrades and pronogrades differ with respects to OP–PR, OP–GL, and FMA. Although the multivariate approach seems to have some discrimination power, the results are most likely driven by facial and neurocranial variability embedded in some of the indices. These results demonstrate that indices relying on the anteroposterior positioning of the foramen may not be appropriate proxies for locomotion among primates. The assumptions about locomotor and postural habits in fossil hominins based on foramen magnum indices should be revised in light of these new findings. 相似文献
9.
The cranial base is one of the major foci of interest in functional craniology. The evolution and morphogenesis of this structure are still poorly known and rather controversial because of multifactorial influences and polyphasic stages. Endocranial dynamics are associated anteriorly with the upper facial structures, laterally with the mandibular system and midsagittally with brain development. In the present study, we investigated the endocranial morphology of modern humans using 3D landmark-based approaches, i.e. geometric morphometrics and Euclidean distance matrix analysis. The structure of endocranial variation is poorly integrated, with only weak reciprocal influences among the three fossae. Some major variations are associated with changes in the posterior fossa, with possible consequences on the anterior areas. These main patterns of integration are hypothesized to be influenced by the connective tensors of the dura layers. Static allometry and sex differences are largely related to the ontogenetic sequences, characterized by early maturation of the anterior fossa with respect to the middle and posterior regions (i.e., relatively shorter posterior part of the planum sphenoideum and vertical lengthening of the clivus in males). The relative independence between the endocranial fossae, as well as their structural connection through the meningeal tensors, must be carefully considered in studies on the evolutionary dynamics, since they lead to mosaic changes through phylogeny. 相似文献
10.
11.
Adam Veroni Dejana Nikitovic Michael A. Schillaci 《American journal of physical anthropology》2010,141(1):147-151
The purpose of this article is to examine the level of sexual dimorphism exhibited in the foramen magnum and occipital condyles of juveniles, and to test the utility of this sexual dimorphism for estimating sex. Using five basicranial measurements taken from 36 juveniles of known sex and age from the Lisbon documented collection (Portugal), we evaluated sexual dimorphism in the juvenile cranial base. Our application of a method previously applied solely to adults indicated that the basicranium is sexually dimorphic in juveniles, with larger foramen magnum and occipital condyle dimensions observed in males. Significant univariate differences between males and females were found for length and breadth of the foramen magnum, and breadth of the left occipital condyle. Using these measurements, multivariate discriminant analysis indicated that sex was correctly assigned 75.8% of time. Obtained accuracy, however, was lower than reported by previous studies of adult samples. We suggest that this discrepancy is a result of population variability rather than age. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc. 相似文献
12.
Low birth weight, a major cause of infant morbidity and mortality, is caused by different factors in Western and developing-country populations. In addition to differing in terms of ethnicity, maternal size, maternal nutritional status, and disease load, developing-country and Western populations are also characterized by different environmental heat loads. Thermodynamic theory predicts that heat stress is mitigated by reduced size of both mother and offspring, and therefore generates the hypothesis that reduced birth weight may be an adaptation to environmental heat load. The aim of this study was to test the hypothesis that environmental heat load is associated with between-population variability in birth weight. Data on birth weight and thermal environment were obtained from the literature for 140 populations. Further data on several physical, social, and biological confounders were also collated. After adjusting for confounding factors, of which only maternal height and per capita gross domestic product were statistically significant, heat stress showed a significant inverse relationship with birth weight in 108 populations, accounting for an additional 9.6% of the between-population variance. Though based on data collected from more than one source, these results are consistent with the hypothesis that heat stress is inversely associated with birth weight, as previously reported for within-population studies. Further studies are needed to establish to what extent heat stress is a determinant of low birth weight in developing countries. 相似文献
13.
SKW 18, a partial hominin cranium recovered from the site of Swartkrans, South Africa, in 1968 is described. It is derived from ex situ breccia of the Hanging Remnant of Member 1, dated to approximately 1.5-1.8 Mya. Although partially encased in breccia, it was refit to the facial fragment SK 52 (Clarke 1977 The Cranium of the Swartkrans Hominid SK 847 and Its Relevance to Human Origins, Ph.D. dissertation, University of the Witwatersrand, Johannesburg), producing the composite cranium SKW 18/SK 52. Subsequent preparation revealed the most complete cranial base attributable to the species Australopithecus robustus. SKW 18 suffered weathering and slight postdepositional distortion, but retains considerable anatomical detail. The composite cranium most likely represents a large, subadult male, based on the incomplete fusion of the spheno-occipital synchondrosis; unerupted third molar; pronounced development of muscular insertions; and large teeth. Cranial base measures of SKW 18 expand the range of values previously recorded for A. robustus. SKW 18 provides information on anatomical features not previously visible in this taxon, and expands our knowledge of morphological variability recognizable in the cranial base. Morphological heterogeneity in the development of the prevertebral and nuchal muscular insertions is likely the result of sexual dimorphism in A. robustus, while differences in cranial base angles and the development of the occipital/marginal sinus drainage system cannot be attributed to size dimorphism. 相似文献
14.
Kinematic data on primate head and neck posture were collected by filming 29 primate species during locomotion. These were used to test whether head and neck posture are significant influences on basicranial flexion and whether the Frankfurt plane can legitimately be employed in paleoanthropological studies. Three kinematic measurements were recorded as angles relative to the gravity vector, the inclination of the orbital plane, the inclination of the neck, and the inclination of the Frankfurt plane. A fourth kinematic measurement was calculated as the angle between the neck and the orbital plane (the head-neck angle [HNA]). The functional relationships of basicranial flexion were examined by calculating the correlations and partial correlations between HNA and craniometric measurements representing basicranial flexion, orbital kyphosis, and relative brain size (Ross and Ravosa [1993] Am. J. Phys. Anthropol. 91:305–324). Significant partial correlations were observed between relative brain size and basicranial flexion and between HNA and orbital kyphosis. This indicates that brain size, rather than head and neck posture, is the primary influence on flexion, while the degree of orbital kyphosis may act to reorient the visual field in response to variation in head and neck posture. Regarding registration planes, the Frankfurt plane was found to be horizontal in humans but inclined in all nonhuman primates. In contrast, nearly all primates (including humans) oriented their orbits such that they faced anteriorly and slightly inferiorly. These results suggest that for certain functional craniometric studies, the orbital plane may be a more suitable registration plane than Frankfurt “Horizontal.” Am J Phys Anthropol 108:205–222, 1999. © 1999 Wiley-Liss, Inc. 相似文献
15.
16.
William H. Kimbel Yoel Rak 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1556):3365-3376
Cranial base morphology differs among hominoids in ways that are usually attributed to some combination of an enlarged brain, retracted face and upright locomotion in humans. The human foramen magnum is anteriorly inclined and, with the occipital condyles, is forwardly located on a broad, short and flexed basicranium; the petrous elements are coronally rotated; the glenoid region is topographically complex; the nuchal lines are low; and the nuchal plane is horizontal. Australopithecus afarensis (3.7–3.0 Ma) is the earliest known species of the australopith grade in which the adult cranial base can be assessed comprehensively. This region of the adult skull was known from fragments in the 1970s, but renewed fieldwork beginning in the 1990s at the Hadar site, Ethiopia (3.4–3.0 Ma), recovered two nearly complete crania and major portions of a third, each associated with a mandible. These new specimens confirm that in small-brained, bipedal Australopithecus the foramen magnum and occipital condyles were anteriorly sited, as in humans, but without the foramen''s forward inclination. In the large male A.L. 444-2 this is associated with a short basal axis, a bilateral expansion of the base, and an inferiorly rotated, flexed occipital squama—all derived characters shared by later australopiths and humans. However, in A.L. 822-1 (a female) a more primitive morphology is present: although the foramen and condyles reside anteriorly on a short base, the nuchal lines are very high, the nuchal plane is very steep, and the base is as relatively narrow centrally. A.L. 822-1 illuminates fragmentary specimens in the 1970s Hadar collection that hint at aspects of this primitive suite, suggesting that it is a common pattern in the A. afarensis hypodigm. We explore the implications of these specimens for sexual dimorphism and evolutionary scenarios of functional integration in the hominin cranial base. 相似文献
17.
《Journal of morphology》2017,278(10):1312-1320
Modern humans have evolved bulging parietal areas and large, projecting temporal lobes. Both changes, largely due to a longitudinal expansion of these cranial and cerebral elements, were hypothesized to be the result of brain evolution and cognitive variations. Nonetheless, the independence of these two morphological characters has not been evaluated. Because of structural and functional integration among cranial elements, changes in the position of the temporal poles can be a secondary consequence of parietal bulging and reorientation of the head axis. In this study, we use geometric morphometrics to test the correlation between parietal shape and the morphology of the endocranial base in a sample of adult modern humans. Our results suggest that parietal proportions show no correlation with the relative position of the temporal poles within the spatial organization of the endocranial base. The vault and endocranial base are likely to be involved in distinct morphogenetic processes, with scarce or no integration between these two districts. Therefore, the current evidence rejects the hypothesis of reciprocal morphological influences between parietal and temporal morphology, suggesting that evolutionary spatial changes in these two areas may have been independent. However, parietal bulging exerts a visible effect on the rotation of the cranial base, influencing head position and orientation. This change can have had a major relevance in the reorganization of the head functional axis. 相似文献
18.
19.
Theodore M. Cole III Joan T. Richtsmeier 《American journal of physical anthropology》1998,107(3):273-283
Euclidean distance matrix analysis (EDMA) differs from most other morphometric methods for the analysis of landmark coordinate data in that it is coordinate-system invariant. However, strict adherence to coordinate-system invariance (for both biological and statistical reasons) introduces some difficulty in using graphic aids for the analysis and interpretation of EDMA results. We present a simple and effective graphic method to help localize important differences in form, growth, or shape by identifying “influential” landmarks. Examples are presented using simulated data and real data involving both children with craniofacial dysmorphologies and sexual dimorphism in adult Macaca fascicularis. Am J Phys Anthropol 107:273–283, 1998. © 1998 Wiley-Liss, Inc. 相似文献
20.
Alexandra Boucherie Tara Chapman Daniel García-Martínez Caroline Polet Martine Vercauteren 《American journal of physical anthropology》2022,178(1):54-68
Sex estimation is a paramount step of bioprofiling in both forensic anthropology and osteoarchaeology. When the pelvis is not optimally preserved, anthropologists commonly rely on the cranium to accurately estimate sex. Over the last decades, the geometric morphometric (GM) approach has been used to determine sexual dimorphism of the crania, in size and shape, overcoming some difficulties of traditional visual and metric methods. This article aims to investigate sexual dimorphism of the occipital and temporal region through GM analysis in a metapopulation of 50 Western-European identified individuals. Statistical analyses were performed to compare centroid size and shape data between sexes through the examination of distinct functional modules. Regression and Procrustes ANOVA were used to examine allometric and asymmetrical implications. Discriminant functions, combining size and shape data, were established. Significant dimorphism in size was found, with males having larger crania, confirming the major influence size has on cranial morphology. Allometric relationships were found to be statistically significant in both right and left temporal bones while shape differences between sexes were only significant on the right temporal bone. The visualization of the mean consensus demonstrated that males displayed a larger mastoid process associated with a reduced mastoid triangle and less projected occipital condyles. This exploratory study confirms that GM analysis represents an effective way to quantitatively capture shape of dimorphic structures, even on complex rounded ones such as the mastoid region. Further examination in a larger sample would be valuable to design objective visualization tools that can improve morphoscopic sex estimation methods. 相似文献