首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular mechanism for packaging of the adenovirus (Ad) genome into the capsid is likely similar to that of DNA bacteriophages and herpesviruses-the insertion of viral DNA through a portal structure into a preformed prohead driven by an ATP-hydrolyzing molecular machine. It is speculated that the IVa2 protein of adenovirus is the ATPase providing the power stroke of the packaging machinery. Purified IVa2 binds ATP in vitro and, along with a second Ad protein, the L4 22-kilodalton protein (L4-22K), binds specifically to sequences in the Ad genome that are essential for packaging. The efficiency of binding of these proteins in vitro was correlated with the efficiency of packaging in vivo. By utilizing a virus unable to express IVa2, pm8002, it was reported that IVa2 plays a role in assembly of the empty virion. We wanted to address the question of whether the ATP binding, and hence the putative ATPase activity, of IVa2 was required for its role in virus assembly. Our results show that ATPase activity was not required for the assembly of empty virus particles. In addition, we present evidence that particles were assembled in the absence of IVa2 by using two viruses null for IVa2-a deletion mutant virus, ΔIVa2, and the previously described mutant virus, pm8002. Empty virus particles produced by these IVa2 mutant viruses did not contain detectable viral DNA. We conclude that the major role of IVa2 is in viral DNA packaging. A characterization of the empty particles obtained from the IVa2 mutant viruses compared to wild-type empty particles is presented.  相似文献   

2.
Although it has been demonstrated that the adenovirus IVa2 protein binds to the packaging domains on the viral chromosome and interacts with the viral L1 52/55-kDa protein, which is required for viral DNA packaging, there has been no direct evidence demonstrating that the IVa2 protein is involved in DNA packaging. To understand in greater detail the DNA packaging mechanisms of adenovirus, we have asked whether DNA packaging is serotype or subgroup specific. We found that Ad7 (subgroup B), Ad12 (subgroup A), and Ad17 (subgroup D) cannot complement the defect of an Ad5 (subgroup C) mutant, pm8001, which does not package its DNA due to a mutation in the L1 52/55-kDa gene. This indicates that the DNA packaging systems of different serotypes cannot interact productively with Ad5 DNA. Based on this, a chimeric virus containing the Ad7 genome except for the inverted terminal repeats and packaging sequence from Ad5 was constructed. This chimeric virus replicates its DNA and synthesizes Ad7 proteins, but it cannot package its DNA in 293 cells or 293 cells expressing the Ad5 L1 52/55-kDa protein. However, this chimeric virus packages its DNA in 293 cells expressing the Ad5 IVa2 protein. These results indicate that the IVa2 protein plays a role in viral DNA packaging and that its function is serotype specific. Since this chimeric virus cannot package its own DNA, but produces all the components for packaging Ad7 DNA, it may be a more suitable helper virus for the growth of Ad7 gutted vectors for gene transfer.  相似文献   

3.
The adenovirus IVa2 and L1 52/55-kDa proteins are involved in the assembly of new virus particles. Both proteins bind to the packaging sequence of the viral chromosome, and the lack of expression of either protein results in no virus progeny: the absence of the L1 52/55-kDa protein leads to formation of only empty capsids, and the absence of the IVa2 protein results in no capsid assembly. Furthermore, the IVa2 and L1 52/55-kDa proteins interact with each other during adenovirus infection. However, what is not yet clear is when and how this interaction occurs during the course of the viral infection. We defined the domains of the L1 52/55-kDa protein required for interaction with the IVa2 protein, DNA binding, and virus replication by constructing L1 52/55-kDa protein truncations. We found that the N-terminal 173 amino acids of the L1 52/55-kDa protein are essential for interaction with the IVa2 protein. However, for both DNA binding and complementation of the pm8001 mutant virus, which does not express the L1 52/55-kDa protein, the amino-terminal 331 amino acids of the L1 52/55-kDa protein are necessary. These results suggest that the production of infectious virus particles depends on the ability of the L1 52/55-kDa protein to bind to DNA.  相似文献   

4.
Assembly of adenovirus particles is thought to be similar to that of bacteriophages, in which the double-stranded DNA genome is inserted into a preformed empty capsid. Previous studies from our and other laboratories have implicated the viral IVa2 protein as a key component of the encapsidation process. IVa2 binds to the packaging sequence on the viral chromosome in a sequence-specific manner, alone and in conjunction with the viral L4 22K protein. In addition, it interacts with the viral L1 52/55-kDa protein, which is required for DNA packaging. Finally, a mutant virus that does not produce IVa2 is unable to produce any capsids. Therefore, it has been proposed that IVa2 nucleates capsid assembly. A prediction of such a model is that the IVa2 protein would be found at a unique vertex of the mature virion. In this study, the location of IVa2 in the virion has been analyzed using immunogold staining and electron microscopy, and the copy number of IVa2 in virions was determined using three independent methods, quantitative mass spectrometry, metabolic labeling, and Western blotting. The results indicate that it resides at a unique vertex and that there are approximately six to eight IVa2 molecules in each particle. These findings support the hypothesis that the IVa2 protein plays multiple roles in the viral assembly process.  相似文献   

5.
During adenovirus virion assembly, the packaging sequence mediates the encapsidation of the viral genome. This sequence is composed of seven functional units, termed A repeats. Recent evidence suggests that the adenovirus IVa2 protein binds the packaging sequence and is involved in packaging of the genome. Study of the IVa2-packaging sequence interaction has been hindered by difficulty in purifying the protein produced in virus-infected cells or by recombinant techniques. We report the first purification of a recombinant untagged version of the adenovirus IVa2 protein and characterize its binding to the packaging sequence in vitro. Our data indicate that there is more than one IVa2 binding site within the packaging sequence and that IVa2 binding to DNA requires the A-repeat consensus, 5'-TTTG-(N(8))-CG-3'. Furthermore, we present evidence that IVa2 forms a multimeric complex on the packaging sequence. These data support a model in which adenovirus DNA packaging occurs via the formation of a IVa2 multiprotein complex on the packaging sequence.  相似文献   

6.
Assembly of infectious adenovirus particles requires seven functionally redundant elements at the left end of the genome, termed A repeats, that direct packaging of the DNA. Previous studies revealed that the viral IVa2 protein alone interacts with specific sequences in the A repeats but that additional IVa2-containing complexes observed during infection require the viral L4 22-kDa protein. In this report, we purified a recombinant form of the 22-kDa protein to characterize its DNA binding properties. In electrophoretic mobility shift assay analyses, the 22-kDa protein alone did not interact with the A repeats but it did form complexes on them in the presence of the IVa2 protein. These complexes were identical to those seen in extracts from infected cells and had the same DNA sequence dependence. Furthermore, we provide data that the 22-kDa protein enhances binding of the IVa2 protein to the A repeats and that multiple binding sites in the packaging sequence augment this activity. These data support a cooperative role of the IVa2 and 22-kDa proteins in packaging and assembly.  相似文献   

7.
8.
The Epstein-Barr virus (EBV) lytic program includes lytic viral DNA replication and the production of a viral particle into which the replicated viral DNA is packaged. The terminal repeats (TRs) located at the end of the linear viral DNA have been identified as the packaging signals. A TR-negative (TR(-)) mutant therefore provides an appropriate tool to analyze the relationships between EBV DNA packaging and virus production. Here, we show that supernatants from lytically induced 293 cells carrying TR mutant EBV genomes (293/TR(-)) contain large amounts of viral particles devoid of viral DNA which are nevertheless able to bind to EBV target cells. This shows that viral DNA packaging is not a prerequisite for virion formation and egress. Rather surprisingly, supernatants from lytically induced 293/TR(-) cells also contained rare infectious viruses carrying the viral mutant DNA. This observation indicates that the TRs are important but not absolutely essential for virus encapsidation.  相似文献   

9.
K Wu  D Orozco  P Hearing 《Journal of virology》2012,86(19):10474-10483
A variety of cellular and viral processes are coordinately regulated during adenovirus (Ad) infection to achieve optimal virus production. The Ad late gene product L4-22K has been associated with disparate activities during infection, including the regulation of late gene expression, viral DNA packaging, and infectious virus production. We generated and characterized two L4-22K mutant viruses to further explore L4-22K functions during viral infection. Our results show that L4-22K is indeed important for temporal control of viral gene expression not only because it activates late gene expression but also because it suppresses early gene expression. We also show that the L4-22K protein binds to viral packaging sequences in vivo and is essential to recruit two other packaging proteins, IVa2 and L1-52/55K, to this region. The elimination of L4-22K gave rise to the production of only empty virus capsids and not mature virions, which confirms that the L4-22K protein is required for Ad genome packaging. Finally, L4-22K contributes to adenovirus-induced cell death by regulating the expression of the adenovirus death protein. Thus, the adenovirus L4-22K protein is multifunctional and an integral component of crucial aspects of infection.  相似文献   

10.
J Schaack  X Guo  W Y Ho  M Karlok  C Chen    D Ornelles 《Journal of virology》1995,69(7):4079-4085
HeLa and 293 cell lines that express biologically active adenovirus type 5 precursor terminal protein (pTP) have been made. The amount of pTP synthesized in these cell lines ranges from barely detectable to greater than that observed in cells infected with the wild-type virus. The pTP-expressing cell lines permit the growth of a temperature-sensitive terminal protein mutant virus sub100r at the nonpermissive temperature. A higher percentage of the stably transfected 293 cell lines expressed terminal protein, and generally at considerably higher levels, than did the HeLa cell lines. While 293 cells appeared to tolerate pTP better than did HeLa cells, high-level pTP expression in 293 cells led to a significantly reduced growth rate. The 293-pTP cell lines produce infectious virus after transfection with purified viral DNA and form plaques when overlaid with Noble agar after infection at low multiplicity. These cell lines offer promise for the production of adenoviruses lacking pTP expression and therefore completely defective for replication.  相似文献   

11.
12.
We have demonstrated previously that the adenovirus L1 52/55-kDa protein binds to the viral IVa2 protein in infected cells. The significance of this interaction was unclear, however, based on the known functions of these two proteins: the 52/55-kDa protein is required for viral DNA packaging, while the IVa2 protein is a transactivator of the major late promoter (MLP). In this report, we have attempted to elucidate a role for each of the two proteins in the other's known function. There is no apparent effect of the 52/55-kDa protein on the interaction of the IVa2 protein with the MLP. Surprisingly, however, we found that the IVa2 protein can interact with the adenoviral packaging signal and that this interaction involves DNA sequences that have previously been demonstrated to be required for packaging.  相似文献   

13.
14.
Ma HC  Hearing P 《Journal of virology》2011,85(15):7849-7855
The packaging of the adenovirus (Ad) genome into a capsid displays serotype specificity. This specificity has been attributed to viral packaging proteins, the IVa2 protein and the L1-52/55K protein. We previously found that the Ad17 L1-52/55K protein was not able to complement the growth of an Ad5 L1-52/55K mutant virus, whereas two other Ad17 packaging proteins, IVa2 and L4-22K, could complement the growth of Ad5 viruses with mutations in the respective genes. In this report, we investigated why the Ad17 L1-52/55K protein was not able to complement the Ad5 L1-52/55K mutant virus. We demonstrate that the Ad17 L1-52/55K protein binds to the Ad5 IVa2 protein in vitro and the Ad5 packaging domain in vivo, activities previously associated with packaging function. The Ad17 L1-52/55K protein also associates with empty Ad5 capsids. Interestingly, we find that the Ad17 L1-52/55K protein is able to complement the growth of an Ad5 L1-52/55K mutant virus in conjunction with the Ad17 structural protein IIIa. The same result was found with the L1-52/55K and IIIa proteins of several other Ad serotypes, including Ad3 and Ad4. The Ad17 IIIa protein associates with empty Ad5 capsids. Consistent with the complementation results, we find that the IIIa protein interacts with the L1-52/55K protein in vitro and associates with the viral packaging domain in vivo. These results underscore the complex nature of virus assembly and genome encapsidation and provide a new model for how the viral genome may tether to the empty capsid during the encapsidation process.  相似文献   

15.
The E1B 55-kDa oncoprotein of adenovirus enables the virus to overcome restrictions imposed on viral replication by the cell cycle. Approximately 20% of HeLa cells infected with an E1B 55-kDa mutant adenovirus produced virus when evaluated by electron microscopy or by assays for infectious centers. By contrast, all HeLa cells infected with a wild-type adenovirus produced virus. The yield of E1B mutant virus from randomly cycling HeLa cells correlated with the fraction of cells in S phase at the time of infection. In synchronously growing HeLa cells, approximately 75% of the cells infected during S phase with the E1B mutant virus produced virus, whereas only 10% of the cells infected during G1 produced virus. The yield of E1B mutant virus from HeLa cells infected during S phase was sevenfold greater than that of cells infected during G1 and threefold greater than that of cells infected during asynchronous growth. Cells infected during S phase with the E1B mutant virus exhibited severe cytopathic effects, whereas cells infected with the E1B mutant virus during G1 exhibited a mild cytopathic effect. Viral DNA synthesis appeared independent of the cell cycle because equivalent amounts of viral DNA were synthesized in cells infected with either wild-type or E1B mutant virus. The inability of the E1B mutant virus to replicate was not mediated by the status of p53. These results define a novel property of the large tumor antigen of adenovirus in relieving growth restrictions imposed on viral replication by the cell cycle.  相似文献   

16.
Joseph R. Nevins 《Cell》1982,29(3):913-919
We have attempted to determine whether any cellular genes are activated as a result of the action of the adenoviral El A gene. The proteins synthesized in uninfected HeLa cells have been compared to those produced in early adenovirus infected cells. At least one protein, absent from uninfected HeLa cells, was synthesized in large amounts following adenovirus infection. This 70 kd protein was not synthesized in cells infected with the E1A mutant d1312, even when the multiplicity of infection with the mutant was such that the only viral gene not expressed was the E1A gene. Thus the induction of the 70 kd protein requires the expression of the viral E1A gene. The 70 kd protein was also induced by heat shock in uninfected cells. The same 70 kd protein is synthesized in 293 cells, a line of human embryonic kidney cells transformed by a fragment of adenovirus DNA. These cells constitutively express the E1A and E1 B genes.  相似文献   

17.
Wohl BP  Hearing P 《Journal of virology》2008,82(10):5089-5092
The packaging of adenovirus (Ad) DNA into virions is dependent upon cis-acting sequences and trans-acting proteins. We studied the involvement of Ad packaging proteins in the serotype specificity of packaging. Both Ad5 and Ad17 IVa2 and L4-22K proteins complemented the growth of Ad5 IVa2 and L4-22K mutant viruses, respectively. In contrast, the Ad5 L1-52/55K protein complemented an Ad5 L1-52/55K mutant virus, but the Ad17 L1-52/55K protein did not. The analysis of chimeric proteins demonstrated that the N-terminal half of the Ad5 L1-52/55K protein mediated this function. Finally, we demonstrate that the L4-33K and L4-22K proteins have distinct functions during infection.  相似文献   

18.
19.
Two closely related adenovirus early region 1A proteins are expressed in transformed cells. The smaller of these, which is 243 amino acids in length, is required for the transformation of primary rat cells and for the transformation of immortalized rat cells to anchorage-independent growth. This protein is not required for productive infection of exponentially growing HeLa cells but is required for maximal replication in growth (G0)-arrested human lung fibroblasts (WI-38 cells). To determine the function of this protein in viral replication in these G0-arrested cells, we compared viral early mRNA, early protein, and late protein synthesis after infection with wild type or a mutant which does not express the protein. No differences were found. However, viral DNA synthesis by the mutant was delayed and decreased to 20 to 30% that of wild type in these cells. Viral DNA synthesis was much less defective in growing WI-38 cells, and in the transformed human HeLa cell line it occurred at wild-type levels. Furthermore, the mutant which can express only the 243-amino-acid early region 1A protein induced cellular DNA synthesis in G0-arrested rat cells to the same level as wild-type virus. A mutant which can express only the 289-amino-acid early region 1A protein induced less cellular DNA synthesis in G0-arrested rat cells. We propose that the early region 1A 243-amino-acid protein alters the physiology of arrested permissive cells to allow maximal viral DNA replication. In nonpermissive rodent cells, the 243-amino-acid protein drives G0-arrested cells into S phase. This activity is probably important for the immortalization of primary cells.  相似文献   

20.
Production of viral vectors using recombinase-mediated cassette exchange   总被引:1,自引:0,他引:1  
DNA viruses are often used as vectors for foreign gene expression, but large DNA region from cloned or authentic viral genomes must usually be handled to generate viral vectors. Here, we present a unique system for generating adenoviral vectors by directly substituting a gene of interest in a small transfected plasmid with a replaced gene in a replicating viral genome in Cre-expressing 293 cells using the recombinase-mediated cassette exchange (RMCE) reaction. In combination with a positive selection of the viral cis-acting packaging signal connected with the gene of interest, the purpose vector was enriched to 97.5 and 99.8% after three and four cycles of infection, respectively. Our results also showed that the mutant loxP V (previously called loxP 2272), a variant target of Cre used in the RMCE reaction, was useful as a non-compatible mutant to wild-type loxP. This method could be useful for generating not only a large number of adenovirus vectors simultaneously, but also other DNA virus vectors including helper-dependent adenovirus vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号