首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phaseollin is metabolised by cultures of Septoria nodorum, a non-pathogen of bean, into cis and trans isomers of 12,13-dihydrodihydroxyphaseollin. These products are much less fungitoxic than phaseollin which suggests that the capacity to detoxify phytoalexins is not confined to pathogenic fungi.  相似文献   

2.
Phytopathogenic fungi are able to overcome plant chemical defenses through detoxification reactions that are enzyme mediated. As a result of such detoxifications, the plant is quickly depleted of its most important antifungal metabolites and can succumb to pathogen attack. Understanding and predicting such detoxification pathways utilized by phytopathogenic fungi could lead to approaches to control plant pathogens. Towards this end, the inhibitory activities and metabolism of the cruciferous phytoalexins camalexin, brassinin, cyclobrassinin, and brassilexin by the phytopathogenic fungus Botrytis cinerea Pers. (teleomorph: Botryotinia fuckeliana) was investigated. Brassilexin was the most antifungal of the phytoalexins, followed by camalexin, cyclobrassinin and brassinin. Although B. cinerea is a species phylogenetically related to the phytopathogenic fungus Sclerotinia sclerotiorum (Lib) de Bary, contrary to S. sclerotiorum, detoxification of strongly antifungal phytoalexins occurred via either oxidative degradation or hydrolysis but not through glucosylation, suggesting that glucosyl transferases are not involved. A strongly antifungal bisindolylthiadiazole that B. cinerea could not detoxify was discovered, which resulted from spontaneous oxidative dimerization of 3-indolethiocarboxamide, a camalexin detoxification product.  相似文献   

3.
Pedras MS  Minic Z  Jha M 《The FEBS journal》2008,275(14):3691-3705
Blackleg fungi [Leptosphaeria maculans (asexual stage Phoma lingam) and Leptosphaeria biglobosa] are devastating plant pathogens with well-established stratagems to invade crucifers, including the production of enzymes that detoxify plant defenses such as phytoalexins. The significant roles of brassinin, both as a potent crucifer phytoalexin and a biosynthetic precursor of several other plant defenses, make it critical to plant fitness. Brassinin oxidase, a detoxifying enzyme produced by L. maculans both in vitro and in planta, catalyzes the detoxification of brassinin by the unusual oxidative transformation of a dithiocarbamate to an aldehyde. Purified brassinin oxidase has an apparent molecular mass of 57 kDa, is approximately 20% glycosylated, and accepts a wide range of cofactors, including quinones and flavins. Purified brassinin oxidase was used to screen a library of brassinin analogues and crucifer phytoalexins for potential inhibitory activity. Unexpectedly, it was determined that the crucifer phytoalexins camalexin and cyclobrassinin are competitive inhibitors of brassinin oxidase. This discovery suggests that camalexin could protect crucifers from attacks by L. maculans because camalexin is not metabolized by this pathogen and is a strong mycelial growth inhibitor.  相似文献   

4.
Drug-metabolizing enzymes, such as those encoded by the cytochrome P450 genes, are noted for their high degree of interspecies and intraspecies variability. We believe that much of this diversity is the result of continuous molecularly driven coevolution of plants producing phytoalexins and animals responding with new enzymes to detoxify these chemicals. One consequence of human P450 gene evolution is polymorphism in drug metabolism, leading to marked differences in the response of individuals to the toxic and carcinogenic effects of drugs and other environmental chemicals.  相似文献   

5.
Summary Gibberella pulicaris (Fusarium sambucinum) is a major cause of dry-rot of stored potatoes (Solanum tuberosum) worldwide. The ability of field strains ofG. pulicaris to cause dry-rot is correlated with their ability to detoxify sesquiterpene phytoalexins produced by potato. All highly virulent field strains can detoxify the sesquiterpenes rishitin and lubimin. Meiotic recombinational analysis indicates that rishitin detoxification can be controlled at two or more loci. High virulence has been associated with one of these loci, designatedRiml. Detoxification of rishitin and lubimin comprises a complex pattern of reactions involving epoxidation, dehydrogenation, and cyclization. To date, seven lubimin metabolites and one rishitin metabolite have been characterized. Genes for rishitin and lubimin detoxification are being cloned fromG. pulicaris in order to more rigorously analyze the role and regulation of sesquiterpene metabolism in potato dry-rot. Our results indirectly support a role for sesquiterpene phytoalexins in resistance of potato tubers to dry-rot and may enhance research on alternative control strategies for this economically important potato disease.  相似文献   

6.
Phytoalexins   总被引:4,自引:0,他引:4  
Plants respond to infection by accumulating low-molecular-weight antimicrobial stress metabolites called phytoalexins. The phytoalexins are generally lipophilic substances that are products of a plant's secondary metabolism, and they often accumulate at infection sites to concentrations which are inhibitory to the development of fungi and bacteria. Resistance and susceptibility in plants are not determined by the presence or absence of genetic information for resistance mechanisms, including biosynthetic pathways for phytoalexin synthesis, but, rather, by the speed with which the information is expressed, the activity of the gene products, and the magnitude of the resistance response. Unlike the antibody-antigen component of the immune system in animals, low specificity is the general rule for the induction of phytoalexin accumulation and their activity against microorganisms. Annual plants can be systemically immunized against diseases caused by fungi, bacteria, and viruses by restricted infection with the pathogens, avirulent forms of pathogens, or compounds formed in immunized plants. Immunization induces plants to respond rapidly to infection with a multicomponent resistant response. The biosynthesis and accumulation of phytoalexins is one component of this resistant response. Resistance may be elicited by components in the walls and cell surfaces of fungi and bacteria and by compounds liberated from cells, their walls, or surfaces. Resistance can be enhanced or suppressed by products produced by the pathogen, the host, or by their interaction. The successful pathogen avoids recognition by the plant as nonself, suppresses the resistance response, or detoxifies its products. The actors in this play for survival on the metabolic level include the shikimate, acetate-malonate, and acetate-mevalonate pathways; glucans; oligogalacturonates; glycoproteins; lipopolysaccharides; and poly-unsaturated fatty acids. The play is directed by the genetic information of host and pathogen, and this direction is at the level of recognition and not by the presence or absence of mechanisms to contain the development of infectious agents.  相似文献   

7.
Pedras MS  Sarwar MG  Suchy M  Adio AM 《Phytochemistry》2006,67(14):1503-1509
Our continuous search for phytoalexins from crucifers led us to examine phytoalexin production in florets of cauliflower (Brassica oleracea var. botrytis) under abiotic (UV light) elicitation. Four known (isalexin, S-(-)-spirobrassinin, 1-methoxybrassitin, brassicanal C) and three new (caulilexins A-C) phytoalexins were isolated. The syntheses and antifungal activity of caulilexins A-C against the economically important pathogenic fungi Leptosphaeria maculans, Rhizoctonia solani and Sclerotinia sclerotiorum, and the first synthesis of brassicanal C are reported.  相似文献   

8.
Cyclic diterpenoids are commonly biosynthesized from geranylgeranyl diphosphate (GGDP) through the formation of carbon skeletons by specific cyclases and subsequent chemical modifications, such as oxidation, reduction, methylation, and glucosidation. A variety of diterpenoids are produced in higher plants and fungi. Rice produces four classes of diterpene phytoalexins, phytocassanes A to E, oryzalexins A to F, oryzalexin S, and momilactones A and B. The six diterpene cyclase genes involved in the biosynthesis of these phytoalexins were identified and characterized. Fusicoccin A was produced by the phytopathogenic Phomopsis amygdali and served as a plant H(+)-ATPase activator. A PaFS, encoding a fungal diterpene synthase responsible for fusicoccin biosynthesis, was isolated. The PaFS is an unusual chimeric diterpene synthase that possesses not only terpene cyclase activity (the formation of fusicoccadiene, a biosynthetic precursor of fusicoccin A), but also prenyltransferase activity (the formation of GGDP). Thus, we identified a unique multifunctional diterpene synthase family in fungi.  相似文献   

9.
Pathogen-induced plant proteins are classified according to their functional characteristics: involvement in plant cell signaling; inhibition of enzymes excreted by pathogens; stabilization of plant cell walls; ability to trigger apoptosis; enzymatic activity producing lysis of cell walls of pathogenic fungi and bacteria; enzymatic activity in metabolic pathways of phenylpropanoid and terpenoid phytoalexins; and ability to affect pathogens directly by disturbing the function of their cell membranes or by deactivating their ribosomes. Examples of transgenic plants with increased immunity against pathogens are also provided.  相似文献   

10.
D. Morandi 《Plant and Soil》1996,185(2):241-251
This paper will review work mainly done during the last twenty years on the involvement of phytoalexin and phenolic compounds in mycorrhizal interactions. It has been observed that phytoalexins and associated molecules accumulate in roots after mycorrhizal infection, but less intensively and more slowly than in pathogenic interactions. Following mycorrhizal infection, enzymes of phenylpropanoid metabolism have been shown to be activated differentially. Some flavonoids and isoflavonoids have been reported to stimulate in vitro germination of mycorrhizal fungi or in vitro mycorrhizal infection, but their biological significance in signalling between the two symbiotic partners, and in biocontrol of plant disease by arbuscular mycorrhizal fungi, have not yet been elucidated.  相似文献   

11.
The destruxin B detoxification pathway present in Sinapis alba is also present in three unrelated species, Camelina sativa, Capsella bursa-pastoris, and Eruca sativa, suggesting a conservation of this pathway across crucifers. The chemical structure of a destruxin B metabolite, (6'-O-malonyl)hydroxydestruxin B beta-D-glucopyranoside, was also establised. Considering that Camelina sativa and Capsella bursa-pastoris detoxify destruxin B and produce the phytoalexins camalexins, these wild crucifers appear to represent unique and perhaps useful sources of blackleg resistance in strategic plant breeding.  相似文献   

12.
13.
This review deals with the sources and chemical and biological characterization of phytotoxic polyphenols produced essentially by pathogenic fungi of forest and crop plants and of weeds. Their potential use as natural herbicides and fungicides is discussed. The use of some polyphenols which could be applied as an alternative method to control parasitic weeds, the so called “suicidal germination”, will be covered. The sources and the isolation and identification of polyphenols produced by some crop plants in consequence of the attack of pathogenic fungi as plant defence compounds (phytoalexins), are also described.  相似文献   

14.
Plants are under constant attack by a vast array of pathogens. To impede their attackers they use both broad-spectrum and pathogen-specific defence mechanisms. The arms race between plants and fungal pathogens is fascinatingly varied, and what might be elicited as a plant defence mechanism against a pathogen could promote or enhance the virulence of other pathogens. Fungi use countermeasures to detoxify plant antimicrobial compounds and to evade host resistance mechanisms. Certain fungal species also manipulate the host hormone balance to create an environment that is beneficial to their survival. Several lines of evidence indicate a co-evolutionary arms race in which both plants and fungi can respond to changes that occur in their opponents.  相似文献   

15.
Pathogen-induced plant proteins are classified by their functional characteristics: (a) involvement in plant cell signaling; (b) inhibition of enzymes excreted by the pathogens; (c) stabilization of plant cell walls or ability to trigger apoptosis; (d) enzymatic activity producing lysis of cell walls of pathogenic fungi and bacteria; (e) enzymatic activity in metabolic pathways of phenylpropane and terpene phytoalexins; and (f) ability to affect the pathogens directly, by disturbing the function of their cell membranes or by inactivating their ribosomes. Examples of transgenic plants with increased immunity against pathogens are also provided.  相似文献   

16.
17.
Control of development in plants and fungi by far-UV radiation   总被引:3,自引:0,他引:3  
Far-UV (200–320 nm) radiation regulates development in plants and fungi. Some of these responses are controlled by a chromophore which absorbs strongly near 260 nm, possibly a nucleic acid. Other responses are controlled by a chromophore(s). with maximal in vivo sensitivity near 295 nm. In plants. far-UV induces genes in the phenylpropanoid pathway and the synthesis of phytoalexins and flavonoids. Far-UV also regulates growth rate. controls curvature and taxis, and stimulates sexual and asexual morphogenesis of fungi. Some of these developmental responses may prevent damage by far-UV radiation.  相似文献   

18.
Wheat, maize, rye and certain other agriculturally important species in the Poaceae family produce the benzoxazolinone class of phytoalexins on pest and pathogen attack. Benzoxazolinones can inhibit the growth of pathogens. However, certain fungi can actively detoxify these compounds. Despite this, a clear link between the ability to detoxify benzoxazolinones and pathogen virulence has not been shown. Here, through comparative genome analysis of several Fusarium species, we have identified a conserved genomic region around the FDB2 gene encoding an N‐malonyltransferase enzyme known to be involved in benzoxazolinone degradation in the maize pathogen Fusarium verticillioides. Expression analyses demonstrated that a cluster of nine genes was responsive to exogenous benzoxazolinone in the important wheat pathogen Fusarium pseudograminearum. The analysis of independent F. pseudograminearum FDB2 knockouts and complementation of the knockout with FDB2 homologues from F. graminearum and F. verticillioides confirmed that the N‐malonyltransferase enzyme encoded by this gene is central to the detoxification of benzoxazolinones, and that Fdb2 contributes quantitatively to virulence towards wheat in head blight inoculation assays. This contrasts with previous observations in F. verticillioides, where no effect of FDB2 mutations on pathogen virulence towards maize was observed. Overall, our results demonstrate that the detoxification of benzoxazolinones is a strategy adopted by wheat‐infecting F. pseudograminearum to overcome host‐derived chemical defences.  相似文献   

19.
Microbial detoxification of waste rubber material by wood-rotting fungi   总被引:2,自引:0,他引:2  
The extensive use of rubber products, mainly tires, and the difficulties to recycle those products, has resulted in world wide environmental problems. Microbial devulcanisation is a promising way to increase the recycling of rubber materials. One obstacle is that several microorganisms tested for devulcanisation are sensitive to rubber additives. A way to overcome this might be to detoxify the rubber material with fungi prior to the devulcanisation. In this study, 15 species of white-rot and brown-rot fungi have been screened with regard to their capacity to degrade an aromatic model compound in the presence of ground waste tire rubber. The most effective fungus, Resinicium bicolor, was used for detoxification of rubber material. Increase in growth of the desulfurising bacterium Thiobacillus ferrooxidans in presence of the rubber treated with Resinicium bicolor compared to untreated rubber demonstrated that detoxification with fungi is possible.  相似文献   

20.
Agrobacterium radiobacter was tested for the ability to induce the accumulation of phytoalexins and hypersensitive necrotic reaction in pea, bean and potato. A live bacterial suspension with a cell concentration of 1/pL and a solution of a crude polysaccharide produced by the bacteria caused the hypersensitive reaction in potato and bean and the production of phytoalexins in all three species of plants. The results obtained are discussed in connection with the previously found protective effect of the studied strain ofA. radiobacter against soil phytopathogenic fungi. A contribution of defense reactions to the determination of host specificity of the pathogenic strains of theAgrobacterium genus has been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号