首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Outward membrane currents in aggregates of atrial cells prepared from 7-12-d-old chick embryonic hearts were measured with the two microelectrode voltage-clamp technique. Two outward current components, Ix1 and Ix2, were found in the plateau potential range of the action potential. The Ix1 component is activated between -50 and -20 mV; the Ix2 component is activated between -15 and +20 mV. The Ix1 component inwardly rectifies, whereas Ix2 has an approximately linear current-voltage relation. These preparations lack a time-dependent pacemaker current component, even though they beat spontaneously with an interbeat interval of approximately 1 s. A mathematical model of electrical activity is described based on our measurements of time-dependent outward current, and measurements in the literature of inward current components.  相似文献   

2.
Membrane responses to cyclic adenosine monophosphate (cAMP) injections have been studied by means of voltage clamp, Ca-indicator dye, and ion substitution techniques in identified neurons from the abdominal ganglion of Limax maximus. The ventral abdominal giant cell (AGC) displayed a response consisting of a decrease in outward current usually accompanied by a smaller enhancement of voltage-gated Ca2+ influx. Both responses were eliminated by external Cd2+ or Mn2+ and required membrane voltages more positive than -40 mV for expression. The enhanced influx persisted in Ba2+-substituted saline, while the decrease in outward current was blocked. A group of dorsal neurons (RD1-3, LD1) showed a mixed Na-Ca influx induced by cAMP that could be activated over a wide range of membrane potentials (less than -100 to greater than -20 mV). This flux caused a measurable increase in internal Ca2+. The influx was insensitive to Cd2+ and Mn2+ but was reduced by prolonged exposure to Co2+. The relative magnitude of the Na-Ca flux ratio showed considerable variation between specimens. In immature animals the Ca component was absent. The results demonstrated that elevation of intracellular cAMP can cause cell-specific changes of membrane conductance within closely associated neurons.  相似文献   

3.
4.
The ionic currents of clonal Y-1 adrenocortical cells were studied using the whole-cell variant of the patch-clamp technique. These cells had two major current components: a large outward current carried by K ions, and a small inward Ca current. The Ca current depended on the activity of two populations of Ca channels, slow (SD) and fast (FD) deactivating, that could be separated by their different closing time constants (at -80 mV, SD, 3.8 ms, and FD, 0.13 ms). These two kinds of channels also differed in (a) activation threshold (SD, approximately -50 mV; FD, approximately -20 mV), (b) half-maximal activation (SD, between -15 and -10 mV; FD between +10 and +15 mV), and (c) inactivation time course (SD, fast; FD, slow). The total amplitude of the Ca current and the proportion of SD and FD channels varied from cell to cell. The amplitude of the K current was strongly dependent on the internal [Ca2+] and was almost abolished when internal [Ca2+] was less than 0.001 microM. The K current appeared to be independent, or only slightly dependent, of Ca influx. With an internal [Ca2+] of 0.1 microM, the activation threshold was -20 mV, and at +40 mV the half-time of activation was 9 ms. With 73 mM external K the closing time constant at -70 mV was approximately 3 ms. The outward current was also modulated by internal pH and Mg. At a constant pCa gamma a decrease of pH reduced the current amplitude, whereas the activation kinetics were not much altered. Removal of internal Mg produced a drastic decrease in the amplitude of the Ca-activated K current. It was also found that with internal [Ca2+] over 0.1 microM the K current underwent a time-dependent transformation characterized by a large increase in amplitude and in activation kinetics.  相似文献   

5.
A calcium-dependent transient outward current in Xenopus laevis oocytes   总被引:40,自引:0,他引:40  
Membrane currents were investigated in Xenopus laevis oocytes under voltage clamp. Depolarizing pulses, given from a holding potential of about-100 mV, elicited a transient outward current when the membrane potential was made more positive than about-20 mV. As the potential was made increasingly positive the transient outward current first increased and then decreased. The amplitude of the transient current increased when the external Ca2+ concentration was raised; and the current was abolished by Mn2+. It appears that when the membrane is depolarized Ca2+ ions enter the oocyte and trigger an outward current, possibly by opening C1- channels.  相似文献   

6.
Slow cholinergic and peptidergic transmission in sympathetic ganglia   总被引:1,自引:0,他引:1  
Experiments of voltage-clamped bullfrog sympathetic neurons suggest that the "slow depolarization" produced by orthodromic stimulation, by muscarinic agonists, or by the peptide luteinizing hormone-releasing hormone (LHRH), results from the suppression of a time- and voltage-dependent outward K+ current, the "M current" (IM). This current is activated between -60 and -10mV, with a half-maximal activation voltage of -35 mV, a minimum time constant (TM) of 150 ms at -35 mV, and a voltage sensitivity corresponding to a single gating particle with a minimum valency of 4.IM does not show time-dependent inactivation within its activation range and provides the sole potential-sensitive component of the steady outward membrane conductances between -60 and -25 mV. Muscarinic agonists and LHRH selectively depress IM via different receptors, without altering their voltage sensitivity. Although not dependent on external Ca2+ ion, IM is also selectively depressed by Ba2+ ions, so accounting for the cholinomimetic action of Ba2+. It is suggested that IM acts as a braking control on spike discharges and that removal of this control during slow cholinergic and peptidergic transmission provides a unique synaptic tuning mechanism.  相似文献   

7.
There have been periodic reports of nonclassic (4-aminopyridine insensitive) transient outward K+ current in guinea pig ventricular myocytes, with the most recent one describing a novel voltage-gated inwardly rectifying type. In the present study, we have investigated a transient outward current that overlaps inward Ca2+ current (I(Ca,L)) in myocytes dialyzed with 10 mM K+ solution and superfused with Tyrode's solution. Although depolarizations from holding potential (Vhp) -40 to 0 mV elicited relatively small inward I(Ca,L) in these myocytes, removal of external K+ or addition of 0.2 mM Ba2+ more than doubled the amplitude of the current. The basis of the enhancement of I(Ca,L) was the suppression of a large transient outward K+ current. Similar enhancement was observed when Vhp was moved to -80 mV and test depolarizations were preceded by short prepulses to -40 mV. Investigation of the time and voltage properties of the outward K+ transient indicated that it was inwardly rectifying and unlikely to be carried by voltage-gated channels. The outward transient was attenuated in myocytes dialyzed with high-Mg2+ solution, accelerated in myocytes dialyzed with 100 microM spermine solution, and abolished with time in myocytes dialyzed with ATP-free solution. These and other findings suggest that the outward transient is a component of classic "time-independent" inwardly rectifying K+ current.  相似文献   

8.
Enterocytes from the winter flounder (Pseudopleuronectes americanus) were isolated by collagenase digestion and maintained in flounder Ringer's solution. Whole cell currents were studied using the amphotericin-perforated whole-cell patch clamp technique. The mean resting membrane potential and capacitance values or dissociated cells were-45±7 mV and 5±0.4 pF, respectively. Enterocytes held at-20 mV and treated with 1 mol·l-1 ionomycin exhibited outward currents when cells were stepped through a series of voltages from-60 to +110 mV. The reversal potential of this current in flounder Ringer's solution was-55 mV and the voltage at which half-maximal activation occurred was +20 mV. Voltage-dependent inhibition of outward current was observed at +60 mV and above. When cells were bathed in symmetric K Ringer's solution the reversal potential shifted to zero mV and no inhibition of current was observed at voltages between-60 and 140 mV. When the holding potential of the cell was changed from-20 to-80 mV and stepped from-60 to +110 mV, a second [previously characterized, O'Grady et al. (1991)] K current with delayed-rectifier properties was identified. This observation demonstrated that the delayed rectifier K channel and the Ca2+-activated K channel described in this study exist in the same cell. Extracellular addition of 2 mmol·l-1 Ba2+ to cells bathed in symmetric K Ringer's solution resulted in nearly complete inhibition of outward current. Charybdotoxin produced only minor effects on this current. Addition of 8-Br cGMP to the bathing solution also inhibited outward current and this effect could be partially reversed following washout of 8-Br cGMP from the bathing solution. The results of this study indicated that a Ca2+-activated K conductance in winter flounder enterocytes is potentially inhibited by agents that increase intracellular cGMP. A similar effect of cGMP on a delayed rectifier K channel in flounder enterocytes was previously demonstrated.Abbreviations ANP atrial natriuretic peptide - CTX charybdotoxin - EPPS N-2-hydroxyethylpiperazine-N-3-propanesulfonic acid  相似文献   

9.
The electrical properties of Aplysia brasiliana myogenic heart were evaluated. Two distinct types of action potentials (APs) were recorded from intact hearts, an AP with a slow rising phase followed by a slow repolarizing phase and an AP with a 'fast' depolarizing phase followed by a plateau. Although these two APs differ in their rates of depolarization (2.2 x 0.3 V/s), both APs were abolished by the addition of Co2+, Mn2+ and nifedipine or by omitting Ca2+ from the external solution. These data suggest that a Ca2+ inward current is responsible for the generation of both types of APs. Two outward currents activated at -40 mV membrane potential were prominent in isolated cardiac myocytes: a fast activating, fast inactivating outward current similar to the A-type K+ current and a slow activating outward current with kinetics similar to the delayed rectifier K+ current were recorded under voltage clamp conditions. Based on the effects of 4-AP and TEA on the electrical properties of ventricular myocytes, we suggest that the fast kinetic outward current substantially attenuates the peak values of the APs and that the slow activating outward current is involved on membrane repolarization.  相似文献   

10.
The aim of the present study was to explore how mannose enters fibroblasts derived from a panel of children suffering from different subtypes of type I carbohydrate deficient glycoprotein syndrome: seven carbohydrate deficient glycoprotein syndrome subtype Ia (phosphomannomutase deficiency), two carbohydrate deficient glycoprotein syndrome subtype Ib (phosphomannose isomerase deficiency) and two carbohydrate deficient glycoprotein syndrome subtype Ix (not identified deficiency). We showed that a specific mannose transport system exists in all the cells tested but has different characteristics with respect to carbohydrate deficient glycoprotein syndrome subtypes. Subtype Ia fibroblasts presented a mannose uptake equivalent or higher (maximum 1.6-fold) than control cells with a D-[2-3H]-mannose incorporation in nascent N-glycoproteins decreased up to 7-fold. Compared to control cells, the mannose uptake was greatly stimulated in subtype Ib (4.0-fold), due to lower Kuptake and higher Vmax values. Subtype Ib cells showed an increased incorporation of D-[2-3H]-mannose into nascent N-glycoproteins. Subtype Ix fibroblasts presented an intermediary status with mannose uptake equivalent to the control but with an increased incorporation of D-[2-3H]-mannose in nascent N-glycoproteins. All together, our results demonstrate quantitative and/or qualitative modifications in mannose transport of all carbohydrate deficient glycoprotein syndrome fibroblasts in comparison to control cells, with a relative homogeneity within a considered subtype of carbohydrate deficient glycoprotein syndrome. These results are consistent with the possible use of mannose as a therapeutic agent in carbohydrate deficient glycoprotein syndrome Ib and Ix.  相似文献   

11.
This study was designed to test the hypothesis that an outward current (Ix) responsible for action potential repolarization in the cardiac Purkinje fiber is activated by intracellular calcium (Cai). Pharmacological probes were combined with the measurement of membrane current and contractile activity under voltage clamp conditions. Experiments were designed to examine properties of Ix that have previously linked activation of this current to changes in Cai. The independence of Ix from Cai was demonstrated for each case tested. Thus, the results of these experiments support the view that Ix is not a calcium-activated current.  相似文献   

12.
We have studied changes in electrical activity resulting from abrupt alterations of the Na gradient, using ventricular myocytes isolated from feline and bovine hearts. Attempting to investigate the ionic current possibly generated by Na-Ca exchange, we studied the effects of the changes in [Na]o in the presence of 20 mM CsCl to inhibit K currents. To facilitate the effect of Cs, we also used a K-free solution and a patch electrode filled with 150 mM cesium glutamate. The application of 20 mM Nao resulted in hyperpolarization and the action potential duration was reduced. Under voltage clamp, 20 of 45 mM Nao generated an outward current at all membrane potentials investigated. The initial part (100-200 ms) of this current was only partially inhibited by 5 mM NiCl2 which is known to fully block the Ca inward current. However, the outward current generated by the reduced [Na]o was fully inhibited by 20 mM MnCl2 (which presumably inhibits Na-Ca exchange). Our observations extend the work on multicellular cardiac preparations indicating that the outward current elicited by a sudden decrease in Na gradient could be generated by Na-Ca exchange. Although the characteristics of this outward current support certain concepts of the Na-Ca exchange in cardiac muscle, we cannot at present exclude a contribution of other membrane current(s).  相似文献   

13.
An envelope of tails test was used to show that the delayed rectifier K+ current (IK) of guinea pig ventricular myocytes results from the activation of two outward K+ currents. One current was specifically blocked by the benzenesulfonamide antiarrhythmic agent, E-4031 (IC50 = 397 nM). The drug-sensitive current, "IKr" exhibits prominent rectification and activates very rapidly relative to the slowly activating drug-insensitive current, "IKs." IKs was characterized by a delayed onset of activation that occurs over a voltage range typical of the classically described cardiac IK. Fully activated IKs, measured as tail current after 7.5-s test pulses, was 11.4 times larger than the fully activated IKr. IKr was also blocked by d-sotalol (100 microM), a less potent benzenesulfonamide Class III antiarrhythmic agent. The activation curve of IKr had a steep slope (+7.5 mV) and a negative half-point (-21.5 mV) relative to the activation curve of IKs (slope = +12.7 mV, half-point = +15.7 mV). The reversal potential (Erev) of IKr (-93 mV) was similar to EK (-94 mV for [K+]o = 4 mM), whereas Erev of IKs was -77 mV. The time constants for activation and deactivation of IKr made up a bell-shaped function of membrane potential, peaking between -30 and -40 mV (170 ms). The slope conductance of the linear portion of the fully activated IKr-V relation was 22.5 S/F. Inward rectification of this relation occurred at potentials greater than -50 mV, resulting in a voltage-dependent decrease in peak IKr at test potentials greater than 0 mV. Peak IKr at 0 mV averaged 0.8 pA/pF (n = 21). Although the magnitude of IKr was small relative to fully activated IKs, the two currents were of similar magnitude when measured during a relatively short pulse protocol (225 ms) at membrane potentials (-20 to +20 mV) typical of the plateau phase of cardiac action potentials.  相似文献   

14.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

15.
Calcium currents in a fast-twitch skeletal muscle of the rat   总被引:9,自引:5,他引:4       下载免费PDF全文
Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calcium current on the basis that (a) its magnitude depended on extracellular calcium concentration, (b) it was blocked by the addition of the divalent cations cadmium or nickel, and reduced in magnitude by the addition of manganese or cobalt, and (c) barium was able to replace calcium as an inward current carrier. The threshold potential for inward calcium current was around -20 mV in 10mM extracellular calcium and about -35 mV in 2 mM calcium. Currents were net inward over part of their time course for potentials up to at least +30 mV. At temperatures of 20-26 degrees C, the peak inward current (at approximately 0 mV) was 139 +/- 14 microA/cm2 (mean +/- SD), increasing to 226 +/- 28 microA/cm2 at temperatures of 27-37 degrees C. The late outward current exhibited considerable fiber-to-fiber variability. In some fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it appeared to be the sum of both leak and a slowly activated outward current. The rate of activation of inward calcium current was strongly temperature dependent. For example, in a representative fiber, the time-to-peak inward current for a +10-mV test pulse decreased from approximately 250 ms at 20 degrees C to 100 ms at 30 degrees C. At 37 degrees C, the time-to-peak current was typically approximately 25 ms. The earliest phase of activation was difficult to quantify because the ionic current was partially obscured by nonlinear charge movement. Nonetheless, at physiological temperatures, the rate of calcium channel activation in rat skeletal muscle is about five times faster than activation of calcium channels in frog muscle. This pathway may be an important source of calcium entry in mammalian muscle.  相似文献   

16.
Summary Membrane ionic currents were measured in pregnant rat uterine smooth muscle under voltage clamp conditions by utilizing the double sucrose gap method, and the effects of conditioning pre-pulses on these currents were investigated. With depolarizing pulses, the early inward current was followed by a late outward current. Cobalt (1mm) abolished the inward current and did not affect the late outward currentper se, but produced changes in the current pattern, suggesting that the inward current overlaps with the initial part of the late outward current. After correction for this overlap, the inward current reached its maximum at about +10 mV and its reversal potential was estimated to be +62 mV. Tetraethylammonium (TEA) suppressed the outward currents and increased the apparent inward current. The increase in the inward current by TEA thus could be due to a suppression of the outward current. The reversal potential for the outward current was estimated to be –87 mV. Conditioning depolarization and hyperpolarization both produced a decrease in the inward current. Complete depolarization block occurred at a membrane potential of –20 mV. Conditioning hyperpolarization experiments in the presence of cobalt and/or TEA revealed that the decrease in the inward current caused by conditioning hyperpolarization was a result of an increase in the outward current overlapping with the inward current. It appears that a part of the potassium channel population is inactivated at the resting membrane potential and that this inactivation is removed by hyperpolarization.  相似文献   

17.
Astrocytes (both type 1 and type 2), cultured from the central nervous system of newborn or 7 day old rats show voltage gated sodium and potassium channels that are activated when the membrane is depolarized to greater than -40 mV. The sodium channels in these cells have an h-infinity curve similar to that of nodal membranes but the activation (peak current-voltage) curves are shifted along the voltage axis by about +30 mV. These sodium currents are blocked only by high concentrations of tetrodotoxin. The voltage activated potassium currents in both types of astrocyte show at least two components; an inactivating component that is suppressed at holding potentials of greater than -40 mV and a persistent, non-inactivating current. Several types of single channel currents were observed in outside-out membrane patches from type 2 astrocytes. One type of potassium channel showed inactivation on depolarization and may contribute to the whole-cell inactivating current. In contrast, oligodendrocytes showed no obvious voltage gated membrane channels. The properties of the type 2 astrocyte-oligodendrocyte progenitor cell were investigated in two ways: 1) by examination of cells just beginning to differentiate along the "electrically silent" oligodendrocyte pathway or 2) by recording from progenitor cells cultured for 24 hours in the presence of cycloheximide to block the appearance of new membrane channels. In both cases, voltage gated inward (sodium) and outward (potassium) currents were noted. The outward current response showed both an inactivating and a non-inactivating component. Similar voltage activated inward and outward membrane currents were noted in reactive astrocytes freshly isolated (3-6 hours) from lesioned areas of adult rat brains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have investigated the delayed rectifier current (Ix) in the calf cardiac Purkinje fiber using a conventional two-microelectrode voltage clamp arrangement. The deactivation of Ix was monitored by studying decaying current tails after the application of depolarizing voltage prepulses. The reversal potential (Vrev) of these Ix tails was measured as a function of prepulse magnitude and duration to test for possible permeant ion accumulation- or depletion-induced changes in Vrev. We found that prepulse-induced changes in Vrev were less than 5 mV, provided that prepulse durations were less than or equal to 3.5 s and magnitudes were less than or equal to +35 mV. We kept voltage pulse structures within these limits for the remainder of the experiments in this study. We studied the sensitivity of Vrev to variation in extracellular K+. The reversal potential for Ix is well described by a Goldman-Hodgkin-Katz relation for a channel permeable to Na+ and K+ with PNa/PK = 0.02. The deactivation of Ix was always found to be biexponential and the two components shared a common reversal potential. These results suggest that it is not necessary to postulate the existence of two populations of channels to account for the time course of the Ix tails. Rather, our results can quantitatively be reproduced by a model in which the Ix channel can exist in three (two closed, one open) conformational states connected by voltage dependent rate constants.  相似文献   

19.
A single channel current was studied in the membrane of the immature oocyte of the european frog (Rana esculenta) by using the "patch clamp" technique in the "cell attached" configuration. Single channel activity appeared as short outward currents when membrane potential was made positive inside; full activation required seconds to be complete, no inactivation being appreciable. Deactivation (or current block) upon membrane repolarization was so fast that no inward current could be detected in any case. The reversal potential, estimated by interpolating the I/V diagrams, was -30 mV using standard Ringer as electrode filling solution, and the elementary conductance was 95 pS. Neither reversal potential nor elementary conductance were affected by removal of external Ca2+ (Mg2+ or Ba2+ substitution) or external Cl- (methanesulphonate substitution). The reversal potential moved towards positive potentials by substituting external Na+ with K+, the magnitude of the shifts being consistent with a ratio PK/PNa = 6.4. A distinctive property of the current/voltage relation for this K-current is its anomalous bell-shape, the outward current displaying a maximum at membrane potentials around 75 mV with standard Ringer as electrode filling solution and tending to zero with more positive potentials.  相似文献   

20.
Voltage-dependent membrane currents of cells dissociated from tongues of larval tiger salamanders (Ambystoma tigrinum) were studied using whole-cell and single-channel patch-clamp techniques. Nongustatory epithelial cells displayed only passive membrane properties. Cells dissociated from taste buds, presumed to be gustatory receptor cells, generated both inward and outward currents in response to depolarizing voltage steps from a holding potential of -60 or -80 mV. Almost all taste cells displayed a transient inward current that activated at -30 mV, reached a peak between 0 and +10 mV and rapidly inactivated. This inward current was blocked by tetrodotoxin (TTX) or by substitution of choline for Na+ in the bath solution, indicating that it was a Na+ current. Approximately 60% of the taste cells also displayed a sustained inward current which activated slowly at about -30 mV and reached a peak at 0 to +10 mV. The amplitude of the slow inward current was larger when Ca2+ was replaced by Ba2+ and it was blocked by bath applied CO2+, indicating it was a Ca2+ current. Delayed outward K+ currents were observed in all taste cells although in about 10% of the cells, they were small and activated only at voltages more depolarized than +10 mV. Normally, K+ currents activated at -40 mV and usually showed some inactivation during a 25-ms voltage step. The inactivating component of outward current was not observed at holding potentials more depolarized -40 mV. The outward currents were blocked by tetraethylammonium chloride (TEA) and BaCl2 in the bath or by substitution of Cs+ for K+ in the pipette solution. Both transient and noninactivating components of outward current were partially suppressed by CO2+, suggesting the presence of a Ca2(+)-activated K+ current component. Single-channel currents were recorded in cell-attached and outside-out patches of taste cell membranes. Two types of K+ channels were partially characterized, one having a mean unitary conductance of 21 pS, and the other, a conductance of 148 pS. These experiments demonstrate that tiger salamander taste cells have a variety of voltage- and ion-dependent currents including Na+ currents, Ca2+ currents and three types of K+ currents. One or more of these conductances may be modulated either directly by taste stimuli or indirectly by stimulus-regulated second messenger systems to give rise to stimulus-activated receptor potentials. Others may play a role in modulation of neurotransmitter release at synapses with taste nerve fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号