首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial myopathy, encephalopathy, lactic acidosis and strokelike episode (MELAS) is a major group of heterogeneous mitochondrial disorders. To identify the defective gene, mitochondrial DNA from a patient with MELAS was sequenced by using amplified DNA fragments as sequencing templates. In 14.1 kbp determined out of 16.6 kbp of the whole mitochondrial gene, at least 21 nucleotides were different from those of a control human mitochondrial DNA. One of the substitutions was a transition of A to G in the tRNA(Leu) (UUR) gene at Cambridge nucleotide number 3,243. This nucleotide is conserved not only in many mitochondrial tRNAs but in most cytosolic tRNA molecules. An Apa I restriction site was gained by the substitution of this nucleotide. The Apa I digestion of the amplified DNA fragment revealed that all independent 6 patients had G at nucleotide number 3,243 in their mitochondrial DNAs, but none of 11 control individuals had G at this position. This result strongly suggests that the mutation in the mitochondrial tRNALeu gene causes MELAS.  相似文献   

2.
The mitochondrial tRNA(Leu(UUR)) gene (MTTL) is a hot spot for pathogenic mutations that are associated with mitochondrial diseases with various clinical features. Among these mutations, the A3243G mutation was associated with various types of mitochondrial multisystem disorders, such as MIDD, MELAS, MERRF, PEO, hypertrophic cardiomyopathy, and a subtype of Leigh syndrome. We screened 128 Tunisian patients for the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. This screening was carried out using PCR-RFLP with the restriction endonuclease ApaI. None of the 128 patients or the 100 controls tested were found to carry the mitochondrial A3243G mutation in the tRNA(Leu(UUR)) gene in homoplasmic or heteroplasmic form. After direct sequencing of the entire mitochondrial tRNA(Leu(UUR)) gene and a part of the mitochondrial NADH dehydrogenase 1, we found neither mutations nor polymorphisms in the MTTL1 gene in the tested patients and controls, and we confirmed the absence of the A3243G mutation in this gene. We also found a T3396C transition in the ND1 gene in one family with NSHL which was absent in the other patients and in 100 controls. Neither polymorphisms nor other mutations were found in the mitochondrial tRNA(Leu(UUR)) gene in the tested patients.  相似文献   

3.
Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA(Val). This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.  相似文献   

4.
Mutations in the mitochondrial tRNA(leu) (UUR) gene have been associated with diabetes mellitus and deafness. We screened for the presence of mtDNA mutations in the tRNA(leu) (UUR) gene and adjacent ND1 sequences in 12 diabetes mellitus pedigrees with a possible maternal inheritance of the disease. One patient carried a G to A substitution at nt 3243 (tRNA(leu) (UUR) gene) in heteroplasmic state. In a second pedigree a patient had an A to G substitution at nt 3397 in the ND1 gene. All maternal relatives of the proband had the 3397 substitution in homoplasmic state. This substitution was not present in 246 nonsymptomatic Caucasian controls. The 3397 substitution changes a highly conserved methionine to a valine at aa 31 and has previously been found in Alzheimer's (AD) and Parkinson's (PD) disease patients. Substitutions in the mitochondrial ND1 gene at aa 30 and 31 have associated with a number of different diseases (e.g. AD/PD, MELAS, cardiomyopathy and diabetes mellitus, LHON, Wolfram-syndrome and maternal inherited diabetes) suggesting that changes at these two codons may be associated with very diverse pathogenic processes. In a further attempt to search for mtDNA mutations outside the tRNAleu gene associated with diabetes, the whole mtDNA genome sequence was determined for two patients with maternally inherited diabetes and deafness. Except for substitutions previously reported as polymorphisms, none of the two patients showed any non-synonymous substitutions either in homoplasmic or heteroplasmic state. These results imply that the maternal inherited diabetes and deafness in these patients must result from alterations of nuclear genes and/or environmental factors.  相似文献   

5.
Lactic acidosis has been associated with a variety of clinical conditions and can be due to mutation in nuclear or mitochondrial genes. We performed mutations screening of all mitochondrial tRNA genes in 44 patients who referred as hyperlactic acidosis. Patients showed heterogeneous phenotypes including Leigh disease in four, MELAS in six, unclassified mitochondrial myopathy in 10, cardiomyopathy in five, MERRF in one, pure lactic acidosis in six, and others in 12 including facio-scaplo-femoral muscular dystrophy (FSFD), familial cerebellar ataxia, recurrent Reye syndrome, cerebral palsy with mental retardation. We measured enzymatic activities of pyruvate dehydrogenase complex, and respiratory chain enzymes. All mitochondrial tRNA genes and known mutation of ATPase 6 were studied by single strand conformation polymorphism (SSCP), automated DNA sequence and PCR-RFLP methods. We have found one patient with PDHC deficiency and six patients with Complex I+IV deficiency, though the most of the patients showed subnormal to deficient state of respiratory chain enzyme activities. We have identified one of the nucleotide changes in 29 patients. Single nucleotide changes in mitochondrial tRNA genes are found in 27 patients and one in ATPase 6 gene in two patients. One of four pathogenic point mutations (A3243G, C3303T, A8348G, and T8993G) was identified in 12 patients who showed the phenotype of Leigh syndrome, MELAS, cardimyopathy and cerebral palsy with epilepsy. Seventeen patients have one of the normal polymorphisms in the mitochondrial tRNA gene reported before. SSCP and PCR-RFLP could detect the heteroplasmic condition when the percentage of mutant up to 5, however, it cannot be observed by direct sequencing method. It is important to screen the mtDNA mutation not only by direct sequence but also by PCR-RFLP and the other sensitive methods to detect the heroplasmy when lactic acidosis has been documented in the patients who are not fulfilled the criteria of mitochondrial disorders.  相似文献   

6.
7.
We have recently identified a point mutation in the mitochondrially encoded tRNA(Leu(UUR)) gene which associates with a combination of type II diabetes mellitus and sensorineural hearing loss in a large pedigree. To extend this finding to other syndromes which exhibit a combination of diabetes mellitus and hearing loss we have sequenced all mitochondrial tRNA genes from two patients with the Wolfram syndrome, a rare congenital disease characterized by diabetes mellitus, deafness, diabetes insipidus and optic atrophy. In each patient, a single different mutation was identified. One is an A to G transition mutation at np 12,308 in tRNA(Leu(CUN)) gene in a region which is highly conserved between species during evolution. This mutation has been described by Lauber et al. (1) as associating with chronic progressive external ophthalmoplegia (CPEO). The other is a C to T transition mutation at np 15,904 in tRNA(Thr) gene. Both mutations are also present in the general population (frequency tRNA(Leu(CUN)) mutation 0.16, tRNA(Thr) mutation 0.015). These findings suggest that evolutionarily conserved regions in mitochondrial tRNA genes can exhibit a significant polymorphism in humans, and that the mutation at np 12,308 in the tRNA(Leu(CUN)) gene is unlikely to be associated with CPEO and Wolfram syndrome.  相似文献   

8.
Point mutations in mitochondrial (mt) tRNA genes are associated with a variety of human mitochondrial diseases. We have shown previously that mt tRNA(Leu(UUR)) with a MELAS A3243G mutation and mt tRNA(Lys) with a MERRF A8344G mutation derived from HeLa background cybrid cells are deficient in normal taurine-containing modifications [taum(5)(s(2))U; 5-taurinomethyl-(2-thio)uridine] at the anticodon wobble position in both cases. The wobble modification deficiency results in defective translation. We report here wobble modification deficiencies of mutant mt tRNAs from cybrid cells with different nuclear backgrounds, as well as from patient tissues. These findings demonstrate the generality of the wobble modification deficiency in mutant tRNAs in MELAS and MERRF.  相似文献   

9.
10.
We describe a novel mutation in human mitochondrial NADH dehydrogenase 1 gene (ND1), a G to A transition at nucleotide position 3337, which is co-segregated with two known mutations in tRNALeu(CUN) A12308G and tRNAThr C15946T. These mutations were detected in two unrelated patients with different clinical phenotypes, exhibiting cardiomyopathy as the common symptom. The ND1 G3337A mutation that was detected was found almost homoplasmic in the two patients and it was absent in 150 individuals that were tested as control group. Mitochondrial respiratory chain complex I activity of the patients platelets was also tested and found decreased compared to those of controls. We suggest that the co-existence of mutations in tRNA and ND1 genes may act synergistically affecting the clinical phenotype. Our study highlights the enormous phenotypic diversity that exists among pathogenic mtDNA mutations and re-emphasizes the need for a more careful clinical approach.  相似文献   

11.
In 3 of 40 MELAS patients, a new common mutation, a T-to-C transition at nucleotide position 3271 in the mitochondrial tRNA(Leu(UUR] gene was recognized and was very near to the most common mutation site at 3243. With a simple detection method using polymerase chain reaction with a mismatch primer, none of 46 patients with other mitochondrial diseases and 50 controls had this mutation.  相似文献   

12.
Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNAVal. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.  相似文献   

13.
We have taken advantage of the similarity between human and yeast (Saccharomyces cerevisiae) mitochondrial tRNALeu(UUR), and of the possibility of transforming yeast mitochondria, to construct yeast mitochondrial mutations in the gene encoding tRNALeu(UUR) equivalent to the human A3243G, C3256T and T3291C mutations that have been found in patients with the neurodegenerative disease MELAS (for mitochondrial 'myopathy, encephalopathy, lactic acidosis and stroke-like episodes'). The resulting yeast cells (bearing the equivalent mutations A14G, C26T and T69C) were defective for growth on respiratory substrates, exhibited an abnormal mitochondrial morphology, and accumulated mitochondrial DNA deletions at a very high rate, a trait characteristic of severe mitochondrial defects in protein synthesis. This effect was specific at least in the pathogenic mutation T69C, because when we introduced A or G instead of C, the respiratory defect was absent or very mild. All defective phenotypes returned to normal when the mutant cells were transformed by multicopy plasmids carrying the gene encoding the mitochondrial elongation factor EF-Tu. The ability to create and analyse such mutated strains and to select correcting genes should make yeast a good model for the study of tRNAs and their interacting partners and a practical tool for the study of pathological mutations and of tRNA sequence polymorphisms.  相似文献   

14.
Using RNase protection analysis, we found a novel C to G mutation at nucleotide position 3093 of mitochondrial DNA (mtDNA) in a previously reported 35-year-old woman exhibiting clinical features of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome together with diabetes mellitus, hyperthyroidism and cardiomyopathy. The patient also had an A3243G mutation in the tRNA(Leu(UUR)) gene and a 260-base pair duplication in the D-loop of mtDNA. The fibroblasts of the patient were cultured and used for the construction of cybrids using cytoplasmic transfer of the patient's mtDNA to the mtDNA-less rho(0) cells. RNA isolated from the cybrids was subjected to RNase protection analysis, and a C3093G transversion at the 16S rRNA gene and a MELAS-associated A3243G mutation of mtDNA were detected. The novel C3093G mutation together with the A3243G transition were found in muscle biopsies, hair follicles and blood cells of this patient and also in her skin fibroblasts and cybrids. The proportion of the C3093G mutant mtDNA in muscle biopsies of the patient was 51%. In contrast, the mutation was not detected in three sons of the proband. To characterize the impact of the mtDNA mutation-associated defects on mitochondrial function, we determined the respiratory enzyme activities of the primary culture of fibroblasts established from the proband, her mother and her three sons. The proportions of mtDNA with the C3093G transversion and the A3243G transition in the fibroblasts of the proband were 45 and 58%, respectively. However, the fibroblasts of the proband's mother and children harbored lower levels of mtDNA with the A3243G mutation but did not contain the C3093G mutation. The complex I activity in the proband's fibroblasts was decreased to 47% of the control but those of the fibroblasts of the mother and three sons of the proband were not significantly changed. These findings suggest that the C3093G transversion together with the A3243G transition of mtDNA impaired the respiratory function of mitochondria and caused the atypical MELAS syndrome associated with diabetes mellitus, hyperthyroidism and cardiomyopathy in this patient.  相似文献   

15.
16.
Dilated cardiomyopathy (DCM) is widely accepted as a pluricausal or multifactorial disease. Because of the linkage between energy metabolism in the mitochondria and cardiac muscle contraction, it is reasonable to assume that mitochondrial abnormalities may be responsible for some forms of DCM. We analysed the whole mitochondrial genome in a series of 45 patients with DCM for alterations and compared the findings with those of 62 control subjects. A total of 458 sequence changes could be identified. These sequence changes were distributed among the whole mitochondrial DNA (mtDNA). An increased number of novel missense mutations could be detected nearly in all genes encoding for protein subunits in DCM patients. In genes coding for NADH dehydrogenase subunits the number of mtDNA mutations detected in patients with DCM was significantly increased (p < 0.05) compared with control subjects. Eight mutations were found to occur in conserved amino acids in the above species. The c.5973G > A (Ala-Trp) and the c.7042T > G (Val-Asp) mutations were located in highly conserved domains of the gene coding for cytochrome c oxidase subunit. Two tRNA mutations could be detected in the mtDNA of DCM patients alone. The T-C transition at nt 15,924 is connected with respiratory enzyme deficiency, mitochondrial myopathy, and cardiomyopathy. The c.16189T > C mutation in the D-loop region that is associated with susceptibility to DCM could be detected in 15.6% of patients as well as in 9.7% of controls. Thus, mutations altering the function of the enzyme subunits of the respiratory chain can be relevant for the pathogenesis of dilated cardiomyopathy.  相似文献   

17.
We investigate the relationships between acylation defects and structure alterations due to base substitutions in yeast mitochondrial (mt) tRNA(UUR)(Leu). The studied substitutions are equivalent to the A3243G and T3250C human pathogenetic tRNA mutations. Our data show that both mutations can produce tRNA(UUR)(Leu) acylation defects, although to a different extent. For mutant A14G (equivalent to MELAS A3243G base substitution), the presence of the tRNA and its defective aminoacylation could be observed only in the nuclear context of W303, a strain where the protein synthesis defects caused by tRNA base substitutions are far less severe than in previously studied strains. For mutant T20C (equivalent to the MM/CPEO human T3250C mutation), the acylation defect was less severe, and a thermosensitive acylation could be detected also in the MCC123 strain. The correlation between the severity of the in vivo phenotypes of yeast tRNA mutants and those obtained in in vitro studies of human tRNA mutants supports the view that yeast is a suitable model to study the cellular and molecular effects of tRNA mutations involved in human pathologies. Furthermore, the yeast model offers the possibility of modulating the severity of yeast respiratory phenotypes by studying the tRNA mutants in different nuclear contexts. The nucleotides at positions 14 and 20 are both highly conserved in yeast and human mt tRNAs; however, the different effect of their mutations can be explained by structure analyses and quantum mechanics calculations that can shed light on the molecular mechanisms responsible for the experimentally determined defects of the mutants.  相似文献   

18.
摘要: 文中建立了一种新型的寡核苷酸芯片, 用于线粒体脑肌病伴高乳酸血症和卒中样发作(Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes, MELAS)和肌阵挛性癫痫伴发不规整红纤维(Myoclonic epilepsy with ragged red fibers, MERRF)线粒体DNA所有已知突变位点的集成检测。将31对allele位点特异性的寡核苷酸探针包被在醛基修饰的载玻片表面, 以多重不对称PCR方法制备Cy5荧光标记靶基因。利用此芯片对5例MELAS患者、5例MERRF患者及20例健康对照进行筛查, 结果发现, MELAS患者均为MT-T1基因A3243G突变; 在MERRF患者组, MT-TK基因A8344G突变4例, T8356C突变1例; 健康对照组均未发现31种相关mtDNA突变。芯片检测与DNA测序结果完全一致。结果表明, 这种寡核苷酸芯片可以对MELAS和MERRF综合征已知突变位点进行同步快速检测, 具有较高的灵敏度和特异性。这一模式的基因芯片经过适当改装后也可用于其他人类线粒体疾病的基因诊断。  相似文献   

19.
MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) is a disease mainly due to a mutation at position 3243 (A --> G) in the leucine tRNA gene in mitochondrial DNA. Symptoms of the disorder are complex and the exact pathogenesis is not understood. A review of the literature on the subject is presented.  相似文献   

20.
Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNA(Leu(UUR)) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号